探索工业智能检测,基于轻量级YOLOv8开发构建焊接缺陷检测识别系统

焊接缺陷相关的开发实践在前面的博文中已经有所涉及了,感兴趣的话可以自行移步阅读即可:
《探索工业智能检测,基于轻量级YOLOv5s开发构建焊接缺陷检测识别系统》

将智能模型应用和工业等领域结合起来是有不错市场前景的,比如:布匹瑕疵检测、瓷砖瑕疵检测、PCB缺陷检测等等,在工业领域内也有很多可为的方向,本文的核心目的就是想要基于目标检测模型来开发构建焊接缺陷检测模型,探索分析工业领域智能化检测。

首先看下效果图:

简单看下实例数据情况:

如果对于如何从零开始基于YOLOv8模型来开发构建自己的个性化检测项目有疑问的,可以移步阅读我的超详细教程:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型。

分类也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
acc
top1
acc
top5
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B) at 640
YOLOv8n-cls22466.687.012.90.312.74.3
YOLOv8s-cls22472.391.123.40.356.413.5
YOLOv8m-cls22476.493.285.40.6217.042.7
YOLOv8l-cls22478.094.1163.00.8737.599.7
YOLOv8x-cls22478.494.3232.01.0157.4154.8

分割也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg64036.730.596.11.213.412.6
YOLOv8s-seg64044.636.8155.71.4711.842.6
YOLOv8m-seg64049.940.8317.02.1827.3110.2
YOLOv8l-seg64052.342.6572.42.7946.0220.5
YOLOv8x-seg64053.443.4712.14.0271.8344.1

姿态估计也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPpose
50-95
mAPpose
50
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-pose64050.480.1131.81.183.39.2
YOLOv8s-pose64060.086.2233.21.4211.630.2
YOLOv8m-pose64065.088.8456.32.0026.481.0
YOLOv8l-pose64067.690.0784.52.5944.4168.6
YOLOv8x-pose64069.290.21607.13.7369.4263.2
YOLOv8x-pose-p6128071.691.24088.710.0499.11066.4

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我选择的是n、s和m三款相对轻量级的模型来进行模型的开发,因为我们的线上设备算力受限,不能选择l或者是x这么大参数量的模型,如下所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs


# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

等待训练完成后看下结果详情,训练阶段保持完全相同的参数设置,为了直观对比分析,这里对其进行对比可视化。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

综合三款模型对比来看不难看出:模型效果没有拉开明显的差异,s系列的模型甚至要优于m系列模型表现,最终选择使用的也是s系列的模型。

接下来以s系列模型为基准,看下详细的评测指标:
【混淆矩阵】

【PR曲线】

【训练可视化】

【Batch实例】

实验出真知,实践看真切,感兴趣可以动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/282983.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java中实现百度浏览器搜索功能(windows/linux)

要在Java中实现百度浏览器搜索功能&#xff0c;你可以使用Selenium WebDriver。Selenium是一个用于自动化浏览器的工具&#xff0c;WebDriver是Selenium的一个子项目&#xff0c;它提供了一套API&#xff0c;可以直接与浏览器交互。 依赖: <dependencies><dependency…

WorkPlus:领先的IM即时通讯软件,打造高效沟通协作新时代

在当今快节奏的商业环境中&#xff0c;高效沟通和协作是企业成功的关键。而IM即时通讯软件作为实现高效沟通的利器&#xff0c;成为了现代企业不可或缺的一部分。作为一款领先的IM即时通讯软件&#xff0c;WorkPlus以其卓越的性能和独特的功能&#xff0c;助力企业打造高效沟通…

万字长文谈自动驾驶occupancy感知

文章目录 prologuepaper listVision-based occupancy :1. [MonoScene: Monocular 3D Semantic Scene Completion [CVPR 2022]](https://arxiv.org/pdf/2112.00726.pdf)2. [Tri-Perspective View for Vision-Based 3D Semantic Occupancy Prediction [CVPR 2023]](https://arxiv…

CSS2_基础学习

CSS2_基础学习 一、css基础知识二、css选择器2.0 选择器的优先级2.1 CSS基本选择器2.2 复合选择器2.2.1. 交集选择器2.2.2. 并集选择器2.2.3. 后代选择器&#xff08;加空格&#xff09;2.2.4. 子代选择器2.2.5. 兄弟选择器2.2.6. 属性选择器2.2.7. 伪类选择器2.2.8. 伪元素选择…

Spark中的数据加载与保存

Apache Spark是一个强大的分布式计算框架&#xff0c;用于处理大规模数据。在Spark中&#xff0c;数据加载与保存是数据处理流程的关键步骤之一。本文将深入探讨Spark中数据加载与保存的基本概念和常见操作&#xff0c;包括加载不同数据源、保存数据到不同格式以及性能优化等方…

【Jmeter】Jmeter基础9-BeanShell介绍

3、BeanShell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法。 3.1、Jmeter中使用的BeanShell 在Jmeter中&#xff0c;除了配置元件&#xff0c;其他类型的元件中都有BeanShell。BeanShell 是一种完全符合Java语法规范的脚本语言,并且又拥…

CSS一个纯样式花里胡哨的动态渐变背景块

使用SASS或CSS纯样式花里胡哨的动态渐变背景块 鼠标放在小方块上会放大并挤压周围方块&#xff0c;背景颜色会动态改变。 效果如下 HTML结构 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"vie…

【头歌实训】kafka-入门篇

文章目录 第1关&#xff1a;kafka - 初体验任务描述相关知识Kafka 简述Kafka 应用场景Kafka 架构组件kafka 常用命令 编程要求测试说明答案代码 第2关&#xff1a;生产者 &#xff08;Producer &#xff09; - 简单模式任务描述相关知识Producer 简单模式Producer 的开发步骤Ka…

VMware虚拟机之文件夹共享jdk和tomcat安装防火墙设置

目录 一. 配置文件夹共享功能 1.1 为什么需要配置文件夹共享功能 1.2 配置文件共享功能 1.3 普通共享和高级共享的区别 1.3.1 普通共享 1.3.2 高级共享 1.3.3 总结 二. jdk的配置 2.1 安装jdk 2.2 配置jdk的环境配置jdk 2.3 配置成功 三. TomCat的配置 四. 防火墙设置 4.1…

PyTorch常用工具(2)预训练模型

文章目录 前言2 预训练模型 前言 在训练神经网络的过程中需要用到很多的工具&#xff0c;最重要的是数据处理、可视化和GPU加速。本章主要介绍PyTorch在这些方面常用的工具模块&#xff0c;合理使用这些工具可以极大地提高编程效率。 由于内容较多&#xff0c;本文分成了五篇…

2023年终总结|回顾学习Tensorflow、Keras的历程

2023年4月&#xff0c;初探TensorFlow2.0&#xff0c;对比了1.0版本的差异。接着&#xff0c;学习了TensorFlow2.0的常量矩阵、四则运算以及常用函数。学习了数据切割、张量梯度计算、遍历元素、类别索引转换等技巧&#xff0c;并掌握了CNN输出特征图形状的计算方法。 在数据处…

【漏洞复现】企望制造ERP系统 RCE漏洞

漏洞描述 企望制造ERP系统是畅捷通公司开发的一款领先的生产管理系统&#xff0c;它以集成化管理为核心设计理念&#xff0c;通过模块化机制&#xff0c;帮助企业实现生产、采购、库存等方面的高效管理。该系统存在RCE远程命令执行漏洞&#xff0c;恶意攻击者可利用此漏洞进行…

流逝的时光

文章目录 创作历程展望2024 创作历程 自2019.6.28注册csdn&#xff0c;期间断断续续的通过其查找相应资料&#xff0c;受益颇多 今研一&#xff0c;发现论文看了又忘&#xff0c;于是借此平台来记录&#xff0c;可以看到基本都是基于原论文进行翻译&#xff0c;并没有所思所想&…

今年努力输出的嵌入式Linux视频

今年努力了一波&#xff0c;几个月周六日无休&#xff0c;自己在嵌入式linux工作有些年头&#xff0c;结合自己也是一直和SLAM工程师对接&#xff0c;所以输出了一波面向SLAM算法工程师Linux课程&#xff0c;当然嵌入式入门的同学也可以学习。下面是合作的官方前面发的宣传文章…

《Spring Cloud学习笔记:微服务保护Sentinel + JMeter快速入门》

Review 解决了服务拆分之后的服务治理问题&#xff1a;Nacos解决了服务治理问题OpenFeign解决了服务之间的远程调用问题网关与前端进行交互&#xff0c;基于网关的过滤器解决了登录校验的问题 流量控制&#xff1a;避免因为突发流量而导致的服务宕机。 隔离和降级&#xff1a…

浅学lombok

Lombok&#xff08;Project Lombok&#xff09;是一个用于 Java 编程语言的开源库&#xff0c;旨在减少 Java 代码中的冗余和样板代码&#xff0c;提高开发人员的生产力。它通过使用注解来自动生成 Java 类的常见方法和代码&#xff0c;从而使开发人员能够编写更简洁、更具可读…

Django Rest Framework(DRF)框架搭建步骤,包含部分错误解决

一、初步搭建项目 1.使用PyCharm 2021创建Djiango项目&#xff0c;配置如下&#xff08;假设应用名叫djiango_python) Python &#xff08;3.6&#xff0c; 3.7&#xff0c; 3.8&#xff0c; 3.9&#xff0c; 3.10&#xff0c; 3.11&#xff09;> 当前版本 3.8.6Django &a…

雪花算法(Snowflake)介绍和Java实现

1、雪花算法介绍 (1) 雪花算法(SnowFlake)是分布式微服务下生成全局唯一ID&#xff0c;并且可以做到去中心化的常用算法&#xff0c;最早是Twitter公司在其内部的分布式环境下生成ID的方式。 雪花算法的名字可以这么理解&#xff0c;世界上没有两片完全相同的雪花&#xff0c;…

shell shell脚本编写常用命令 语法 shell 脚本工具推荐

shell 脚本 计算机语言 Shebang 定义解释器 主要定义&#xff0c;您的脚本是用什么语言写的 #!/usr/bin/python //定义这是一个python语言#!/bin/bash //定义这是一个shell语言 echo SHELL我们执行的 linux 命令的时候&#xff0c;其实是使用 /bin/bash 这个二进制文…

【模拟电路】基础理论与实际应用

一、毫安时和毫瓦时 二、开关电路 三、继电器 四、半导体 五、二极管 六、三极管 七、三极管应用案例 一、毫安时和毫瓦时 毫安时&#xff08;mAh&#xff09;和毫瓦时&#xff08;mWh&#xff09;是两个不同的物理量&#xff0c;它们分别表示电量和能量的度量单位。下面的图…