大数定律中心极限定理

1.切比雪夫不等式

切比雪夫不等式可以对随机变量偏离期望值的概率做出估计,这是大数定律的推理基础。以下介绍一个对切比雪夫不等式的直观证明。

1.1 示性函数

对于随机事件A,我们引入一个示性函数 I A = { 1 , A发生 0 , A不发生 I_A=\begin{cases} 1&,\text{A发生} \\ 0&,\text{A不发生} \end{cases} IA={10,A发生,A不发生,即一次实验中,若 A A A发生了,则 I I I的值为1,否则为0。

现在思考一个问题:这个函数的自变量是什么?

我们知道,随机事件在做一次试验后有一个确定的观察结果,称这个观察结果为样本点 ω \omega ω,所有可能的样本点的集合称为样本空间$\Omega =\left { \omega \right } ,称 ,称 ,称\Omega 的一个子集 的一个子集 的一个子集A$为随机事件。

例如,掷一个六面骰子,记得到数字 k k k的样本点为 ω k \omega_k ωk,则 Ω = { ω 1 , ω 2 , ω 3 , ω 4 , ω 5 , ω 6 } \Omega = \{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6\} Ω={ω1,ω2,ω3,ω4,ω5,ω6},随机事件“得到的数字为偶数”为 A = { ω 2 , ω 4 , ω 6 } A = \{\omega_2,\omega_4,\omega_6\} A={ω2,ω4,ω6}

由此可知,示性函数是关于样本点的函数,即
I A ( ω ) = { 1 , ω ∈ A 0 , ω ∉ A (试验后) I_A(\omega)=\begin{cases} 1&,\omega \in A \\ 0&,\omega \notin A \end{cases} \text {(试验后)} IA(ω)={10,ωA,ω/A(试验后)

在试验之前,我们能获得哪个样本点也是未知的,因此样本点也是个随机事件,记为 ξ \xi ξ,相应的示性函数可以记为
I A = { 1 , ξ ∈ A 0 , ξ ∉ A (试验前) I_A=\begin{cases} 1&,\xi \in A \\ 0&,\xi \notin A \end{cases} \text {(试验前)} IA={10,ξA,ξ/A(试验前)

在试验之前, I I I的值也是未知的,因此 I I I是个二值随机变量。这样,我们就建立了随机事件 A A A和随机变量 I I I之间的一一对应关系。

I I I求数学期望可得
E I A = 1 × P ( ξ ∈ A ) + 0 × P ( ξ ∉ A ) = P ( ξ ∈ A ) \mathbb{E}I_A=1 \times P(\xi \in A) + 0 \times P(\xi \notin A)=P(\xi \in A) EIA=1×P(ξA)+0×P(ξ/A)=P(ξA)

P ( ξ ∈ A ) P(\xi \in A) P(ξA)是什么?是样本点落在 A A A里面的概率,也就是 A A A事件发生的概率 P ( A ) P(A) P(A),由此我们就得到了示性函数很重要的性质:其期望值正是对应的随机事件的概率,即
E I A = P ( A ) \mathbb{E}I_A=P(A) EIA=P(A)

1.2 马尔科夫不等式

对于非负的随机变量 X X X和定值 a a a,考虑随机事件 A = { X ≥ a } A=\{X \ge a\} A={Xa},我们可以画出示性函数 I A I_A IA关于观察值 x x x的图像,如图所示:
在这里插入图片描述

容易发现 I X ≥ a ( x ) ≤ x a I_{X \ge a}(x) \le \frac{x}{a} IXa(x)ax恒成立。把 x x x换为随机变量 X X X,再对该式取数学期望得
E I X ≥ a = P ( X ≥ a ) ≤ E X a \mathbb{E}I_{X \ge a}=P(X \ge a) \le \frac{\mathbb{E}X}{a} EIXa=P(Xa)aEX
称该不等式为马尔科夫Markov不等式

从理解上说,如果非负随机变量 X X X的期望存在,则 X X X超过某个定值 a a a的概率不超过 E a \frac{\mathbb{E}}{a} aE。举个简单的例子:如果我们知道所有人收入的平均数 a a a,那么随机抽一个人收入超过 10 a 10a 10a的概率不超过 10 % 10\% 10%

根据图中两个函数的差距,我们大致能理解这个不等式对概率的估计时比较粗超的。

1.3 切比雪夫不等式

对于随机变量 X X X,记 μ = E X \mu = \mathbb{E}X μ=EX,考虑随机事件 A = { ∣ X − μ ∣ ≥ a } A=\{|X-\mu|\ge a\} A={Xμa},其示性函数的图像如图所示:
在这里插入图片描述

易知 I ∣ X − μ ∣ ≥ a ≤ ( x − μ ) 2 a 2 I_{|X-\mu|\ge a}\le \frac{{(x-\mu)}^2}{a^2} IXμaa2(xμ)2恒成立。将该式 x x x换成 X X X并取数学期望得
E I ∣ X − μ ∣ ≥ a = P ( ∣ X − μ ∣ ≥ a ) ≤ D X a 2 \mathbb{E}I_{|X-\mu|\ge a}=P(|X-\mu|\ge a)\le \frac{\mathbb{D}X}{a^2} EIXμa=P(Xμa)a2DX
称上面这个不等式为切比雪夫Chebyshev不等式

从理解上来说,如果随机变量 X X X的期望和方差存在,则 X X X和期望值的距离大于 a a a的概率不超过 D X a 2 \frac{\mathbb{D}X}{a^2} a2DX,给定的范围越大( a a a越大),或 X X X的方差越小,则偏离的概率越小,这和直觉是相符的。

同样的,切比雪夫不等式对概率的估计也比较粗糙。


2. 大数定律

对于一系列随机变量 { X n } \{X_n\} {Xn},设每个随机变量都有期望。由于随机变量之和 ∑ i = 1 n X i \sum_{i=1}^{n}X_i i=1nXi很有可能发散到无穷大,我们转而考虑随机变量的均值 X ˉ n = 1 n ∑ i = 1 n X i {\bar{X}_n}=\frac{1}{n}\sum_{i=1}^{n}X_i Xˉn=n1i=1nXi和其期望 E ( X ˉ n ) \mathbb{E}({\bar{X}_n}) E(Xˉn)之间的距离。若 { X n } \{X_n\} {Xn}满足一定条件,当 n n n足够大时,这个距离会以非常大的概率接近0,这就是大数定律的主要思想。

定义:
任取 ε > 0 \varepsilon >0 ε>0,若恒有 lim ⁡ n → ∞ P ( ∣ X ˉ n − E X ˉ n ∣ < ε ) = 1 \lim_{n \to \infty} P(\left | \bar{X}_n-\mathbb{E}\bar{X}_n \right | < \varepsilon )=1 limnP( XˉnEXˉn <ε)=1,称 { X n } \{X_n\} {Xn}服从(弱)大数定律,称 X ˉ n \bar{X}_n Xˉn依概率收敛于 E ( X ˉ n ) \mathbb{E}({\bar{X}_n}) E(Xˉn),记作
X ˉ n ⟶ P E ( X ˉ n ) \bar{X}_n\overset{P}{\longrightarrow} \mathbb{E}({\bar{X}_n}) XˉnPE(Xˉn)

2.1 马尔可夫大数定律

任取 ε > 0 \varepsilon >0 ε>0,由切比雪夫不等式可知
P ( ∣ X ˉ n − E X ˉ n ∣ < ε ) ≥ 1 − D ( X ˉ n ) ε 2 P(\left | \bar{X}_n-\mathbb{E}\bar{X}_n \right | < \varepsilon )\ge 1-\frac{\mathbb{D}({\bar{X}_n})}{{\varepsilon}^2} P( XˉnEXˉn <ε)1ε2D(Xˉn)
= 1 − 1 ε 2 n 2 D ( ∑ i = 1 n X i ) =1-\frac{1}{{\varepsilon}^2n^2}\mathbb{D}(\sum_{i=1}^{n}X_i) =1ε2n21D(i=1nXi)
由此得到马尔可夫大数定律:
如果 lim ⁡ n → ∞ 1 n 2 D ( ∑ i = 1 n X i ) = 0 \lim_{n \to \infty}\frac{1}{n^2}\mathbb{D}(\sum_{i=1}^{n}X_i)=0 limnn21D(i=1nXi)=0,则 { X n } \{X_n\} {Xn}服从大数定律。

2.2 切比雪夫大数定律

在马尔可夫大数定律的基础上,如果 { X n } \{X_n\} {Xn}两两不相关,则方差可以拆开:
1 n 2 D ( ∑ i = 1 n X i ) = 1 n 2 ∑ i = 1 n D X i \frac{1}{n^2}\mathbb{D}(\sum_{i=1}^{n}X_i)=\frac{1}{n^2}\sum_{i=1}^{n}\mathbb{D}X_i n21D(i=1nXi)=n21i=1nDXi
如果 D X i \mathbb{D}X_i DXi有共同的上界c,则
1 n 2 D ( ∑ i = 1 n X i ) ≤ n c n 2 = c n \frac{1}{n^2}\mathbb{D}(\sum_{i=1}^{n}X_i)\le \frac{nc}{n^2}=\frac{c}{n} n21D(i=1nXi)n2nc=nc
P ( ∣ X ˉ n − E X ˉ n ∣ < ε ) ≥ 1 − c ε 2 n P(\left | \bar{X}_n-\mathbb{E}\bar{X}_n \right | < \varepsilon )\ge 1-\frac{c}{{\varepsilon}^2n} P( XˉnEXˉn <ε)1ε2nc
由此得到切比雪夫大数定律:
如果 { X n } \{X_n\} {Xn}两两不相关,且方差有共同的上界,则 { X n } \{X_n\} {Xn}两两不相关服从大数定律。


3. 中心极限定理

大数定律研究的是一系列随机变量 { X n } \{X_n\} {Xn}的均值 X ˉ n = 1 n ∑ i = 1 n X i {\bar{X}_n}=\frac{1}{n}\sum_{i=1}^{n}X_i Xˉn=n1i=1nXi是否会依概率收敛于其期望 E ( X ˉ n ) \mathbb{E}({\bar{X}_n}) E(Xˉn)这个数值,而中心极限定理进一步研究 X ˉ n {\bar{X}_n} Xˉn服从什么分布。若 { X n } \{X_n\} {Xn}满足一定的条件,当 n n n足够大时, X ˉ n {\bar{X}_n} Xˉn服从正态分布,这就是中心极限定理的主要思想,这也体现了正态分布的重要性和普遍性。

3.1 独立同分布中心极限定理(林德贝格-勒维)

如果 { X n } \{X_n\} {Xn}独立同分布,且 E X = μ \mathbb{E}X=\mu EX=μ D X = σ 2 > 0 \mathbb{D}X={\sigma}^2>0 DX=σ2>0,则 n n n足够大时 X ˉ n {\bar{X}_n} Xˉn近似服从正态分布 N ( μ , σ 2 n ) N(\mu, \frac{{\sigma}^2}{n}) N(μ,nσ2),即
lim ⁡ x → ∞ P ( X ˉ n − μ σ / n < a ) = Φ ( a ) = ∫ − ∞ a 1 2 π e − t 2 / 2 d t \lim_{x \to \infty} P(\frac{{\bar X}_n-\mu}{\sigma / \sqrt{n}}<a)=\Phi (a)=\int_{-\infty}^{a}\frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt xlimP(σ/n Xˉnμ<a)=Φ(a)=a2π 1et2/2dt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/280346.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

西门子PLC通过PROFINET协议与多功能电表通讯

西门子PLC通过PROFINET协议与多功能电表通讯 项目要求 西门子S71200PLC需要通过PROFINET协议和多功能电表通讯&#xff0c;读取线电压、相电压、线电流、相电流、有功功率、无功功率等参数。 项目实施 采用网关NET90-PN-MBT&#xff08;以下简称“网关”&#xff09;&#…

小米汽车 SU7 技术发布会-智能驾驶猜想,真的“吊打”特斯拉?

核心主题 本人AI数据工程师&#xff0c;看完小米汽车 SU7 技术发布会&#xff0c;主谈智能驾驶猜想。 小米汽车披露&#xff1a;智能驾驶要2024年跻身第一梯队 发布会前沿致敬经典&#xff0c;挺好的毕竟礼多人不怪。 见面道辛苦&#xff0c;必定是江湖。 见面致经典&#…

系列六、Consul

一、Consul 1.1、概述 Consul是一套开源的分布式服务发现和配置管理系统&#xff0c;由HashiCorp公司用Go语言开发。他提供了微服务系统中的服务治理、配置中心、控制总线等功能。这些功能中的每一个功能都可以单独使用&#xff0c;也可以一起使用以构建全方位的服务网格&…

基于 Vue3 和 WebSocket 实现的简单网页聊天应用

首先附上项目介绍,后面详细解释技术细节 1. chat-websocket 一个基于Vue3和WebSocket的简易网络聊天室项目&#xff0c;包括服务端和客户端部分。 项目地址 websocket-chat 下面是项目的主要组成部分和功能&#xff1a; 项目结构 chat-websocket/ |-- server/ # WebSocket 服…

解锁大数据世界的钥匙——Hadoop HDFS安装与使用指南

目录 1、前言 2、Hadoop HDFS简介 3、Hadoop HDFS安装与配置 4、Hadoop HDFS使用 5、结语 1、前言 大数据存储与处理是当今数据科学领域中最重要的任务之一。随着互联网的迅速发展和数据量的爆炸性增长&#xff0c;传统的数据存储和处理方式已经无法满足日益增长的需求。…

C++进阶--二叉树进阶(二叉搜索树)

二叉树进阶&#xff08;二叉搜索树&#xff09; 一、二叉搜索树1.1 二叉搜索树的概念 二、二叉搜索树的结构2.1 结点结构2.2 树结构 三、二叉搜索树的操作&#xff08;非递归&#xff09;3.1 二叉搜索树的插入3.2 二叉搜索树的查找3.3 二叉搜索树的中序遍历3.4 二叉搜索树的删除…

软件测试/测试开发丨Selenium如何复用已打开浏览器

步骤说明&#xff1a; 将浏览器启动方式添加到环境变量。便于我们在终端任意位置启动浏览器终端中使用命令行&#xff0c;打开浏览器debug模式代码中创建driver时&#xff0c;添加debugger_address设置 以Chrome浏览器为例&#xff0c;设置步骤如下&#xff1a; 将浏览器启动…

设计模式——行为型模式

模板方法模式 行为型模式用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务&#xff0c;它涉及算法与对象间职责的分配。 行为型模式分为类行为模式和对象行为模式&#xff0c;前者采用继承机制来在类间…

c++简易AI

今天小编一时雅兴大发&#xff0c;做了一个c的简易AI&#xff0c;还是很垃圾的&#xff01; 题外话&#xff08;每期都会有&#xff09;&#xff1a;我的蛋仔名叫酷影kuying&#xff0c;大家能加我好友吗&#xff1f; 上代码咯&#xff01; #include<bits/stdc.h> #in…

荔枝派nano(f1c100s)基于I2C子系统的BME280驱动

硬件环境&#xff1a; 1、荔枝派nano&#xff08;f1c100s&#xff09; 2、使用f1c100s的i2c0&#xff0c;PE11和PE12引脚 软件环境&#xff1a; 1、Linux 4.15 2、BME280使用介绍 文章目录 一、I2C子系统1、应用层访问i2c设备2、驱动层访问i2c设备2.1、i2c总线设备驱动模型2.2、…

Matlab:K-means算法

K-means算法是一种常见的聚类算法&#xff0c;它将一组数据划分为K个不同的簇&#xff0c;以最小化每个簇内部数据点与簇中心之间的平方距离的总和为目标实现聚类。 1、基本步骤&#xff1a; 1.选择要划分的簇数K&#xff1b; 2.选择K个数据点作为初始的聚类中心&#xff1b…

链表精选题集

目录 1 链表翻转 题目链接&#xff1a; 解题&#xff1a; 试错版&#xff1a; 2 找中间节点 题目链接: 题解&#xff1a; 3 找倒数第k个节点 题目链接&#xff1a; 题解&#xff1a; 4 将两个升序链表合并为一个升序链表 题目链接&#xff1a; 题解&#xff1a; …

数据结构与算法 - 查找

文章目录 第1关&#xff1a;实现折半查找第2关&#xff1a;实现散列查找 第1关&#xff1a;实现折半查找 代码如下&#xff1a; /*************************************************************date: April 2009copyright: Zhu EnDO NOT distribute this code. ***********…

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《面向平稳氢气需求的综合制氢系统鲁棒优化配置方法》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主的专栏栏目《论文与完整程序》 这个标题涉及到针对平稳氢气需求的综合制氢系统鲁棒优化配置方法。让我们逐步解读这个标题的关键要素&#xff1a; 面向平稳氢气需求&#xff1a; 这部分指…

超实用!CSDN个人数据Chrome插件开发

插件简介 相信写过博客的都知道&#xff0c;每天会经常打开自己的主页无数次&#xff0c;尤其是写了一篇新文章&#xff0c;就为了看文章浏览量增长了多少&#xff0c;文章获得了多少个赞&#xff0c;有多少人评论&#xff08;谁不想自己写的文章成为爆款呢&#xff5e;&#…

C# WPF上位机开发(Web API联调)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 很多时候&#xff0c;客户需要开发的不仅仅是一个上位机系统&#xff0c;它还有其他很多配套的系统或设备&#xff0c;比如物流小车、立库、数字孪…

【Maven】报错合集

问题1&#xff1a;com.github.everit-org.json-schema:org.everit.json.schema:pom:1.12.1 failed to transfer from http://localhost:8081/repository/maven-public/ during a previous attempt 发现原来是maven的settings.xml文件配置出现了问题。首先是之前maven进阶学习时…

【Java】一文讲解Java类加载机制

Java 类加载机制是 Java 运行时的核心组成部分&#xff0c;负责在程序运行过程中动态加载和连接类文件&#xff0c;并将其转换为可执行代码。理解类加载机制&#xff0c;能更容易理解你一行行敲下的Java代码是如何在JVM虚拟机上运行起来。并且理解类加载机制之后&#xff0c;我…

SpringBoot整合Canal

一 linux docker compose版本 1.第一步&#xff1a;基础环境 &#xff08;1&#xff09;第1步&#xff1a;安装jak、maven、git、nodejs、npm yum install maven mvn -v 安装maven时会帮安装jdkyum install git git --version 2.27.0yum in…