数模学习day05-插值算法

插值算法有什么作用呢?

        答:数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用


一维差值问题


插值法

1.概念

        插值法指的是根据已知数据点的信息,通过建立适当的插值函数或曲线,估计在未知数据点上的数值。插值是一种逼近技术,用于估计缺失数据或填补数据间的间隔。插值法可以用于处理连续变量的数据,如时间序列分析、地理信息系统等领域。常见的插值方法包括线性插值、拉格朗日插值、牛顿插值、样条插值等。插值法的原理是基于已知数据点之间的连续性假设,通过插值函数或曲线来近似描述未知数据点之间的关系。插值法可以帮助我们填补数据缺失、平滑数据、预测未来数据等。 


2.一般定义


3.原理


拉格朗日插值法

两个点

三个点

四个点

通过以上规律可以推出

拉格朗日插值多项式

但是使用拉格朗日插值法还是存在一些问题。

龙格现象

存在的一个最大的问题就是龙格现象

提问:插值多项式次数越高误差越小吗???

见下图

红色的是原式

        高次差值会产生龙格现象,即在两端处的波动极大,产生明显的震荡。在不熟悉曲线运动趋势的前提下,不要轻易使用高次插值。

那这怎么办呢?
 


分段低次插值

问题一:插值多项式次数高精度未必显著提高

问题二:插值多项式次数越高摄入误差可能显著增大

如何提高插值精度呢?采用分段低次插值是一种办法。

1.分段线性插值

n个点,两个点之间构成差值

2.分段二次插值

 


牛顿插值法


两种插值法对比

        总结来说,拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在实际应用中可根据具体情况选择。拉格朗日插值法适用于数据点较少、精度要求较高的情况;而牛顿插值法适用于数据点较多、计算效率要求较高的情况。

所以一般都使用分段插值法

        而且上面讲的两种插值仅仅要求插值多项式在插值节点处与被插函数有相等的函数值,而这种插值多项式却不能全面反映被插值函数的性态。然而在许多实际问题中,不仅要求插值函数与被插值函数在所有节点处有相同的函数值,它也需要在一个或全部节点上插值多项式与被插函数有相同的低阶甚至高阶的导数值
        对于这些情况,拉格朗日插值和牛顿插值都不能满足。


艾尔米特插值

不但要求在节点上的函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是艾尔米特插值多项式


分段三次艾尔米特插值

直接使用Hermite插值得到的多项式次数较高,也存在龙格现象。因此在实际应用之中,往往使用分段三次Hetmite插值多项式(PCHIP)

plot函数


matlab代码

% 分段三次埃尔米特插值
x = -pi:pi; y = sin(x); 
new_x = -pi:0.1:pi;
p = pchip(x,y,new_x);
figure(1); % 在同一个脚本文件里面,要想画多个图,需要给每个图编号,否则只会显示最后一个图哦~
plot(x, y, 'o', new_x, p, 'r-')

% plot函数用法:
% plot(x1,y1,x2,y2) 
% 线方式: - 实线 :点线 -. 虚点线 - - 波折线 
% 点方式: . 圆点  +加号  * 星号  x x形  o 小圆
% 颜色: y黄; r红; g绿; b蓝; w白; k黑; m紫; c青



 


三次样条插值


matlab代码

说明:

(1)LEGEND(string 1,string 2,string 3)分别将字串符1,字符串2,字符串3 ...标注到图中,每个字符串对应的图标为画图时的图标

(2)Location,用来指定标注显示的位置

% 三次样条插值和分段三次埃尔米特插值的对比
x = -pi:pi; 
y = sin(x); 
new_x = -pi:0.1:pi;
p1 = pchip(x,y,new_x);   %分段三次埃尔米特插值
p2 = spline(x,y,new_x);  %三次样条插值
figure(2);
plot(x,y,'o',new_x,p1,'r-',new_x,p2,'b-')
legend('样本点','三次埃尔米特插值','三次样条插值','Location','SouthEast')   %标注显示在东南方向
% 说明:
% LEGEND(string1,string2,string3, …)
% 分别将字符串1、字符串2、字符串3……标注到图中,每个字符串对应的图标为画图时的图标。
% ‘Location’用来指定标注显示的位置

 


上述两方法对比

n维数据的插值

% n维数据的插值
x = -pi:pi; y = sin(x); 
new_x = -pi:0.1:pi;
p = interpn (x, y, new_x, 'spline');
% 等价于 p = spline(x, y, new_x);
figure(3);
plot(x, y, 'o', new_x, p, 'r-')

人口数据预测



% 人口预测(注意:一般我们很少使用插值算法来预测数据,随着课程的深入,后面的章节会有更适合预测的算法供大家选择,例如灰色预测、拟合预测等)
population=[133126,133770,134413,135069,135738,136427,137122,137866,138639, 139538];
year = 2009:2018;
p1 = pchip(year, population, 2019:2021)  %分段三次埃尔米特插值预测
p2 = spline(year, population, 2019:2021) %三次样条插值预测
figure(4);
plot(year, population,'o',2019:2021,p1,'r*-',2019:2021,p2,'bx-')
legend('样本点','三次埃尔米特插值预测','三次样条插值预测','Location','SouthEast')

总结

没有

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/279868.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux文件fd剖析

学习之前,首先要认识什么是文件? 空文件也是要在内存中占据空间的,因为它还有属性数据。文件 属性 内容文件操作 对内容 对属性 或者对内容和属性的操作标定一个文件的时候,必须使用:路径文件名,文件具…

Spring-4-代理

前面提到过,在Spring中有两种类型的代理:使用JDK Proxy类创建的JDK代理以及使用CGLIB Enhancer类创建的基于CGLIB的代理。 你可能想知道这两种代理之间有什么区别,以及为什么 Spring需要两种代理类型。 在本节中,将详细研究代理…

Android 理解Context

文章目录 Android 理解ContextContext是什么Activity能直接new吗? Context结构和源码一个程序有几个ContextContext的作用Context作用域获取ContextgetApplication()和getApplicationContext()区别Context引起的内存泄露错误的单例模式View持有Activity应用正确使用…

安全配置审计概念、应用场景、常用基线及扫描工具

软件安装完成后都会有默认的配置,但默认配置仅保证了服务正常运行,却很少考虑到安全防护问题,攻击者往往利用这些默认配置产生的脆弱点发起攻击。虽然安全人员已经意识到正确配置软件的重要性,但面对复杂的业务系统和网络结构、网…

儿童学python语言能做什么,儿童学python哪个机构好

这篇文章主要介绍了儿童学python哪个线上机构好,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。 少儿编程python 文章目录 前言 CSP-J与CSP-S少儿编程证书含金量排名&#xff0…

SSH -L:安全、便捷、无边界的网络通行证

欢迎来到我的博客,代码的世界里,每一行都是一个故事 SSH -L:安全、便捷、无边界的网络通行证 前言1. SSH -L基础概念SSH -L 的基本语法:端口转发的原理和作用: 2. SSH -L的基本用法远程访问本地示例:访问本…

git 常用操作合集

✨专栏介绍 在当今数字化时代,Web应用程序已经成为了人们生活和工作中不可或缺的一部分。而要构建出令人印象深刻且功能强大的Web应用程序,就需要掌握一系列前端技术。前端技术涵盖了HTML、CSS和JavaScript等核心技术,以及各种框架、库和工具…

贴片电容和薄膜电容的区别

一、贴片电容和薄膜电容的定义 贴片电容是指体积较小、形状像片的电容器,广泛应用于电路板和电子元器件中。薄膜电容是指以金属膜作为电极的电容器,广泛应用于高频和精密电路中。 二、贴片电容和薄膜电容的应用 贴片电容广泛应用于数码产品、无线通信…

JavaScript中实现页面跳转的几种常用方法

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍在JavaScript中实现页面跳转的几种常用方法以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题…

Linux文件的扩展属性 attr cap

文件属性 Linux文件属性分为常规属性与扩展属性,其中扩展属性有两种:attr与xattr. 一般常规的文件属性由stat API 读取,一般是三种权限,ower, group,时间等。 扩展属性attr 用户态API ioctl(fd, FS_IOC32_SETFLAGS…

git回滚操作,常用场景

文章目录 git回滚操作1.git reset --hard 【版本号】2.回滚后的版本v2又想回到之前的版本v32.1 git reflog 3.git checkout -- 文件名4.git reset HEAD 文件名 git回滚操作 假设我们现在有三个版本 现在回滚一个版本 1.git reset --hard 【版本号】 发现只剩下两个版本了 2.…

二叉树简单实现(C语言版)

一.简单建二叉树 在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二 叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树 …

二叉树顺序结构与堆的概念及性质(c语言实现堆)

上次介绍了树,二叉树的基本概念结构及性质:二叉树数据结构:深入了解二叉树的概念、特性与结构 今天带来的是:二叉树顺序结构与堆的概念及性质,还会用c语言来实现堆 文章目录 1. 二叉树的顺序结构2.堆的概念和结构3.堆…

Kafka:本地设置

这是设置 Kafka 将数据从 Elasticsearch 发布到 Kafka 主题的三部分系列的第一部分;该主题将被 Neo4j 使用。第一部分帮助您在本地设置 Kafka。第二部分将讨论如何设置Elasticsearch将数据发布到Kafka主题。最后 将详细介绍如何使用连接器订阅主题并使用数据。 Kafka Kafka 是…

SpringBoot项目部署及多环境

1、多环境 2、项目部署上线 原始前端 / 后端项目宝塔Linux容器容器平台 3、前后端联调 4、项目扩展和规划 多环境 程序员鱼皮-参考文章 本地开发:localhost(127.0.0.1) 多环境:指同一套项目代码在把不同的阶段需要根据实际…

守护青山绿水 千巡翼Q20无人机变身护林员

守护青山绿水 千巡翼Q20无人机变身护林员 无人机目前在林业上的应用主要在森林资源调查、森林资源监测、森林火灾监测、森林病虫害监测防治、野生动物监测等方面。传统手段在森林资源调查中需要耗费大量人力物力,利用无人机技术可快速获得所需区域高精度信息&#…

Java核心知识点1-java和c++区别、隐式和显示类型转换

java和c区别 java通过虚拟机实现跨平台特性,但c依赖于特定的平台。java没有指针,它的引用可以理解为安全指针,而c和c一样具有指针。java支持自动垃圾回收,而c需要手动回收。java不支持多重继承,只能通过实现多个接口来…

WPF 消息日志打印帮助类:HandyControl+NLog+彩色控制台打印+全局异常捕捉

文章目录 前言相关文章Nlog配置HandyControl配置简单使用显示效果文本内容 全局异常捕捉异常代码运行结果 前言 我将简单的HandyControl的消息打印系统和Nlog搭配使用,简化我们的代码书写 相关文章 .NET 控制台NLog 使用 WPF-UI HandyControl 控件简单实战 C#更改…

【嵌入式开发 Linux 常用命令系列 7.3 -- linux 命令行数值计算】

文章目录 linux 命令行数值计算使用 awk使用 bc 命令使用 Bash 的内置算术扩展使用 expr脚本命令实现 linux 命令行数值计算 在 Linux 命令行中,您可以使用多种方法来执行基本的数学运算。以下是一些示例: 使用 awk awk 是一个强大的文本处理工具&…

Linux第一个小程序-进度条(c语言版)

目录 行缓冲区概念: 行缓冲区代码演示: ​编辑进度条代码 1:memset函数: 2:const char* lable"|/-\\"; 3:usleep C语言 usleep 函数的功能和用法: 4:进度条代码的实…