基于huffman编解码的图像压缩算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Huffman编码算法步骤

4.2 Huffman编码的数学原理

4.3 基于Huffman编解码的图像压缩

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.........................................................................
for ij = 1:size(I0,3) 
    I     = I0(:,:,ij);
    [m,n] = size(I); 
    % 将当前通道的图像展平为一维向量  
    Ivect = I(:);
    % 获取当前通道的唯一像素值和它们的频率  
    symb  = single(unique(Ivect)); 
    cnts  = hist(Ivect, symb); 
    Probs = double(cnts) ./ sum(cnts); 

    % 计算Huffman编码字典和平均长度  
    [dictionary,Lens(ij)] = func_huffdict(symb,Probs); 

    
    % 对当前通道的图像进行Huffman编码  
    Ienc                  = func_huffencode(symb,dictionary,Ivect); 

    % 对Huffman编码进行解码,得到无损压缩后的像素值  
    Idec                  = func_huffdecode(symb,dictionary,Ienc);
    % 将解码后的一维向量重塑为二维图像  
    Iout(:,:,ij)          = reshape(Idec,m,[]);
end

% 将无损压缩后的图像保存为JPEG格式  
imwrite(Iout,'cmps.jpeg'); 
% 显示图像及其相关信息 
figure; 
Isize1      = imfinfo(Names).FileSize;
Isize2      = (Isize1*(sum(Lens(:))/3))/8; 
CmpRates    = 100*((Isize1 - Isize2)/Isize1); 

subplot(1,2,1);
imshow(I0); 
title(sprintf("原图 \n 容量: "+ Isize1/(1024*1024) + " MB"));

subplot(1,2,2);
imshow(Iout); 
title(sprintf("压缩图 \n 容量: "+ Isize2/(1024*1024) + " MB \n 压缩率: "+CmpRates+"%%]"));
96

4.算法理论概述

        Huffman编码是一种用于无损数据压缩的熵编码算法。由David A. Huffman在1952年提出。该算法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。

4.1 Huffman编码算法步骤

初始化:根据符号概率的大小顺序对符号进行排序,即按概率大小排序,得到符号序列。
创建节点:将概率最小的两个节点相加,并作为一个新节点,新节点的概率为这两个节点概率之和。然后,将这两个节点从概率队列中删除,将新节点插入队列中。
更新队列:重复上一步骤,直到队列中只剩下一个节点为止。此时,这个节点就是Huffman树的根节点。
生成编码:从根节点开始,向左的边标记为0,向右的边标记为1。然后,从根节点到每个叶节点的路径就构成了该叶节点对应符号的Huffman编码。


4.2 Huffman编码的数学原理

       Huffman编码的数学原理主要基于信息论中的熵的概念。熵是一个用于度量随机变量不确定性的量。对于一个离散随机变量X,其熵H(X)定义为:

        Huffman编码的主要思想是,对于出现概率高的符号,赋予较短的编码;对于出现概率低的符号,赋予较长的编码。这样,平均码长就会接近熵的下界,从而实现高效的无损压缩。

4.3 基于Huffman编解码的图像压缩

       在图像压缩中,首先需要将图像数据转换为一系列符号。这可以通过多种方式实现,例如可以将像素值作为符号,或者将像素值的差值作为符号。然后,统计这些符号的出现概率,并使用Huffman编码算法生成对应的Huffman编码。最后,将编码后的数据以及Huffman树的结构信息一起存储或传输。

       解码时,首先读取Huffman树的结构信息,重建Huffman树。然后,根据Huffman树对编码后的数据进行解码,得到原始的符号序列。最后,将符号序列转换回图像数据。

       Huffman编码是一种非常有效的无损数据压缩算法,特别适用于处理具有不同出现概率的符号序列。在图像压缩中,通过将图像数据转换为符号序列,并使用Huffman编码对符号进行压缩,可以实现较高的压缩比和较好的图像质量。同时,由于Huffman编码是无损的,因此解压后的图像与原始图像完全一致,不会引入任何失真。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/279816.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于ElementUI二次封装el-table与el-pagination分页组件[实际项目使用]

效果&#xff1a; 二次封装el-table组件 <template><div><!-- showHeader:是否显示头部size:表格的大小height:表格的高度isStripe:表格是否为斑马纹类型tableData:表格数据源isBorder:是否表格边框handleSelectionChange:行选中&#xff0c;多选内容发生变化回…

遗传算法的应用——求解一元函数的极值

遗传算法的应用——求解一元函数的极值 1 基本概念2 预备知识3.1 模拟二进制转化为十进制的方法3.2 轮盘赌选择算法 3 问题4 Matlab代码5 运行效果6 总结 1 基本概念 遗传算法(Genetic Algorithm,GA)是模拟生物在自然环境中遗传和进化过程从而形成的随机全局搜索和优化方法&am…

3D视觉-结构光测量-多线结构光测量

工作原理 多线结构光测量在测量方式上类似上述线结构光测量&#xff0c;但是两者也有着一些明显的差别。这种形式的结构光测量&#xff0c;也常常被成为面结构光测量。首先激光器发出电光源通过通过光栅的调制产生多个切片光束&#xff0c;这些切片光束照射到待测物体表面后形成…

2023第三届中国高校大数据挑战赛B题代码

任务已完成&#xff0c;聚类效果很好&#xff08;主要在于数据的处理以及特征工程&#xff09;, 需代码si&#xff0c;yuer有限先到先得。

AI测试|颠覆客户端UI自动化?别担心,你还不会失业!AppAgent框架简单试用

01 AppAgent会成为新的趋势吗&#xff1f; 近日&#xff0c;腾讯团队发表了一篇论文&#xff0c;并开源了一款基于大语言模型的&#xff0c;用于手机端执行复杂任务的多模态智能代理框架——AppAgent。该框架设计的初衷&#xff0c;是让 AI 智能体能自己操作手机&#xff0c;完…

数据压缩专题——静止图像的小波变换编码

随着数字图像技术的发展和应用的广泛&#xff0c;对图像的压缩和编码变得越来越重要。小波变换编码作为一种有效的图像压缩和编码方法&#xff0c;在静止图像处理中得到了广泛应用。本文将介绍静止图像的小波变换编码的基本原理和关键步骤&#xff0c;以及其在图像压缩中的应用…

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取相机当前实时帧率(C++)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取相机当前实时帧率&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的帧率的技术背景Baumer工业相机的帧率获取方式CameraExplorer如何查看相机帧率信息在NEOAPI SDK里通过函数获取相机帧率&#xff08;C&#xff09; …

前后端分离nodejs+vue医院预约挂号系统6nrhh

医院预约挂号系统主要有管理员、用户和医生三个功能模块。以下将对这三个功能的作用进行详细的剖析。 运行软件:vscode 前端nodejsvueElementUi 语言 node.js 框架&#xff1a;Express/koa 前端:Vue.js 数据库&#xff1a;mysql 开发软件&#xff1a;VScode/webstorm/hbuiderx均…

HBuilder常用的快捷键

查看专栏目录 Network 灰鸽宝典专栏主要关注服务器的配置&#xff0c;前后端开发环境的配置&#xff0c;编辑器的配置&#xff0c;网络服务的配置&#xff0c;网络命令的应用与配置&#xff0c;windows常见问题的解决等。 文章目录 常用快捷键分9项快捷键1.文件(4)2.编辑(13)3.…

JavaScript系列——正则表达式

文章目录 需求场景正则表达式的定义创建正则表达式通过 / 表示式/ 创建通过构造函数创建 编写一个正则表达式的模式使用简单模式使用特殊字符常用特殊字符列表特殊字符组和范围 正则表达式使用代码演示 常用示例验证手机号码合法性 小结 需求场景 在前端开发领域&#xff0c;在…

Idea中使用Tomcat部署并启动Web项目

首先在Idea中选择编辑运行配置&#xff0c;如下图 左上角的“”号&#xff0c;选择Tomcat服务&#xff0c;如下图 自定义服务名称和项目在浏览器的访问路径 配置Tomcat服务器路径&#xff0c;如下图 然后在服务器中部署项目&#xff08;下面的警告提示&#xff1a;Warning: No …

PostgreSQL 作为向量数据库:入门和扩展

PostgreSQL 拥有丰富的扩展和解决方案生态系统&#xff0c;使我们能够将该数据库用于通用人工智能应用程序。本指南将引导您完成使用 PostgreSQL 作为向量数据库构建生成式 AI 应用程序所需的步骤。 我们将从pgvector 扩展开始&#xff0c;它使 Postgres 具有特定于向量数据库…

HCIP:rip综合实验

实验要求&#xff1a; 【R1-R2-R3-R4-R5运行RIPV2】 【R6-R7运行RIPV1】 1.使用合理IP地址规划网络&#xff0c;各自创建环回接口 2.R1创建环回 172.16.1.1/24 172.16.2.1/24 172.16.3.1/24 3.要求R3使用R2访问R1环回 4.加快网络收敛&#xff0c;减少路由条目数量&#xff0c;增…

Vue 框架前导:详解 Ajax

Ajax Ajax 是异步的 JavaScript 和 XML。简单来说就是使用 XMLHttpRequest 对象和服务器通信。可以使用 JSON、XML、HTML 和 text 文本格式来发送和接收数据。具有异步的特性&#xff0c;可在不刷新页面的情况下实现和服务器的通信&#xff0c;交换数据或者更新页面 01. 体验 A…

golang 图片加水印

需求&#xff1a; 1&#xff0c;员工签到图片加水印 2&#xff0c;水印文字需要有半透明的底色&#xff0c;避免水印看不清 3&#xff0c;图片宽设置在600&#xff0c;小于600或者大于600都需要等比例修改图片的高度&#xff0c;保持水印在图片中的大小和位置 4&#xff0c;处理…

湘潭大学-2023年下学期-c语言-作业0x0a-综合1

A 求最小公倍数 #include<stdio.h>int gcd(int a,int b) {return b>0?gcd(b,a%b):a; }int main() {int a,b;while(~scanf("%d%d",&a,&b)){if(a0&&b0) break;printf("%d\n",a*b/gcd(a,b));}return 0; }记住最大公约数的函数&…

【C++杂货铺】C++11新特性——lambda

文章目录 一、C98中的排序二、先来看看 lambda 表达式长什么样三、lambda表达式语法3.1 捕捉列表的使用细节 四、lambda 的底层原理五、结语 一、C98中的排序 在 C98 中&#xff0c;如果要对一个数据集合中的元素进行排序&#xff0c;可以使用 std::sort 方法&#xff0c;下面…

《掌握这些黑科技,让你的电脑办公效率飞升》

随着电脑在现代办公中的广泛应用&#xff0c;如何提升电脑办公效率成为了一个重要的话题。随着科技的不断发展&#xff0c;越来越多的黑科技涌现出来&#xff0c;为我们提升电脑办公效率提供了更多的选择。在这篇文章中&#xff0c;我将为大家介绍几种提升电脑办公效率的黑科技…

【23.12.30高可用篇】什么是SLA?

什么是SLA&#xff1f; ✔️简述✔️拓展知识✔️4个9、5个9 ✔️简述 SLA是Service Level Agreement的缩写&#xff0c;意为服务等级协议。它是指供应商和客户之间达成的一份正式协议&#xff0c;规定了供应商应该向客户提供的服务水平、质量、可靠性和响应时间等指标。 SLA通…

Redis为何如此快速?

1. 引言 Redis&#xff08;Remote Dictionary Server&#xff09;是一个高性能的键值对存储数据库。它以其出色的性能和灵活的数据结构而闻名&#xff0c;今天就来谈谈redis为什么会这么快。 1.1 Redis是单线程吗&#xff1f; Redis 的单线程主要是指 Redis 的网络 IO 和键值对…