yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)

yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)_yolov8训练自己的数据集-CSDN博客在前几天,我们使用yolov8进行了部署,并在目标检测方向上进行自己数据集的训练与测试,今天我们训练下yolov8的图像分类,看看效果如何,同时使用resnet50也训练一个分类模型,看看哪个效果好!

图像分类是指将输入的图像自动分类为不同的类别。它是计算机视觉领域的一个重要应用,可以用于人脸识别、物体识别、场景分类等任务。

通常情况下,图像分类的流程如下:

  1. 收集和准备数据集:收集与任务相关的图像数据,并将其打上标签。
  2. 定义模型:选择一种适合于你的任务的深度学习模型,例如卷积神经网络(CNN)。
  3. 训练模型:使用收集到的数据集对模型进行训练,通过反向传播算法来更新模型参数,使其可以根据输入图像进行正确的分类。
  4. 评估模型性能:使用测试集对已经训练好的模型进行评估,比较模型预测结果与真实标签之间的差异,从而评估模型的性能。
  5. 使用模型进行预测:使用已经训练好的模型对新的图像进行分类预测。

在实际应用中,可以使用各种深度学习框架(例如 TensorFlow、PyTorch、Keras 等)来构建图像分类模型,并使用各种数据增强技术(例如旋转、缩放、裁剪等)来增加数据集的多样性和数量。

如果你想学习如何使用深度学习框架来构建图像分类模型,可以参考一些在线教程、书籍或者 MOOC。

一、yolov8图像分类

1.模型选型

下载yolov8分类模型。

分别使用模型进行测试:

yolov8n-cls效果:

yolov8m-cls效果:

总结:n效果不咋地,还是得使用m进行后续训练工作。 

2.数据集准备

皮肤癌检测_数据集-飞桨AI Studio星河社区

同目标检测,还是放在datasets下。

直接改成这个,省去分数据集操作。 

 3.训练

yolo classify train data=./datasets/skin-cancer-detection model=yolov8n-cls.pt epochs=100

测试:

yolo classify predict model=runs/classify/train4/weights/best.pt source='./datasets/skin-cancer-detection/train/nevus'

  

label: 

 pred:

总结:数据集比较小,yolov8效果不太好。

、resnet50图像分类

Resnet50 网络中包含了 49 个卷积层、一个全连接层。如图下图所示,Resnet50网络结构可以分成七个部分,第一部分不包含残差块,主要对输入进行卷积、正则化、激活函数、最大池化的计算。第二、三、四、五部分结构都包含了残差块,图 中的绿色图块不会改变残差块的尺寸,只用于改变残差块的维度。在 Resnet50 网 络 结 构 中 , 残 差 块 都 有 三 层 卷 积 , 那 网 络 总 共 有1+3×(3+4+6+3)=49个卷积层,加上最后的全连接层总共是 50 层,这也是Resnet50 名称的由来。网络的输入为 224×224×3,经过前五部分的卷积计算,输出为 7×7×2048,池化层会将其转化成一个特征向量,最后分类器会对这个特征向量进行计算并输出类别概率。

运行train.py即可。

train.py

import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import time
 
import numpy as np
import matplotlib.pyplot as plt
import os
from tqdm import tqdm

 
# 一、建立数据集
# animals-6
#   --train
#       |--dog
#       |--cat
#       ...
#   --valid
#       |--dog
#       |--cat
#       ...
#   --test
#       |--dog
#       |--cat
#       ...
# 我的数据集中 train 中每个类别60张图片,valid 中每个类别 10 张图片,test 中每个类别几张到几十张不等,一共 6 个类别。
 
# 二、数据增强
# 建好的数据集在输入网络之前先进行数据增强,包括随机 resize 裁剪到 256 x 256,随机旋转,随机水平翻转,中心裁剪到 224 x 224,转化成 Tensor,正规化等。
image_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
        transforms.RandomRotation(degrees=15),
        transforms.RandomHorizontalFlip(),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406],
                             [0.229, 0.224, 0.225])
    ]),
    'valid': transforms.Compose([
        transforms.Resize(size=256),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406],
                             [0.229, 0.224, 0.225])
    ])
}
 
# 三、加载数据
# torchvision.transforms包DataLoader是 Pytorch 重要的特性,它们使得数据增加和加载数据变得非常简单。
# 使用 DataLoader 加载数据的时候就会将之前定义的数据 transform 就会应用的数据上了。
dataset = 'skin-cancer-detection'
train_directory = './skin-cancer-detection/train'
valid_directory = './skin-cancer-detection/val'
 
batch_size = 32
num_classes = 9 #分类种类数
print(train_directory)
data = {
    'train': datasets.ImageFolder(root=train_directory, transform=image_transforms['train']),
    'valid': datasets.ImageFolder(root=valid_directory, transform=image_transforms['valid'])
}
print("训练集图片类别及其对应编号(种类名:编号):",data['train'].class_to_idx)
print("测试集图片类别及其对应编号:",data['valid'].class_to_idx)
 
 
train_data_size = len(data['train'])
valid_data_size = len(data['valid'])
 
train_data = DataLoader(data['train'], batch_size=batch_size, shuffle=True, num_workers=0)
valid_data = DataLoader(data['valid'], batch_size=batch_size, shuffle=True, num_workers=0)
 
print("训练集图片数量:",train_data_size, "测试集图片数量:",valid_data_size)
 
# 四、迁移学习
# 这里使用ResNet-50的预训练模型。
#resnet50 = models.resnet50(pretrained=True)
resnet50 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)

 
 
# 在PyTorch中加载模型时,所有参数的‘requires_grad’字段默认设置为true。这意味着对参数值的每一次更改都将被存储,以便在用于训练的反向传播图中使用。
# 这增加了内存需求。由于预训练的模型中的大多数参数已经训练好了,因此将requires_grad字段重置为false。
for param in resnet50.parameters():
    param.requires_grad = False
 
# 为了适应自己的数据集,将ResNet-50的最后一层替换为,将原来最后一个全连接层的输入喂给一个有256个输出单元的线性层,接着再连接ReLU层和Dropout层,然后是256 x 6的线性层,输出为6通道的softmax层。
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(
    nn.Linear(fc_inputs, 256),
    nn.ReLU(),
    nn.Dropout(0.4),
    nn.Linear(256, num_classes),
    nn.LogSoftmax(dim=1)
)
 
# 用GPU进行训练。
resnet50 = resnet50.to('cuda:0')
 
# 定义损失函数和优化器。
loss_func = nn.NLLLoss()
optimizer = optim.Adam(resnet50.parameters())
 
# 五、训练
def train_and_valid(model, loss_function, optimizer, epochs=25):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    history = []
    best_acc = 0.0
    best_epoch = 0
 
    for epoch in range(epochs):
        epoch_start = time.time()
        print("Epoch: {}/{}".format(epoch+1, epochs))
 
        model.train()
 
        train_loss = 0.0
        train_acc = 0.0
        valid_loss = 0.0
        valid_acc = 0.0
 
        for i, (inputs, labels) in enumerate(tqdm(train_data)):
            inputs = inputs.to(device)
            labels = labels.to(device)
 
            #因为这里梯度是累加的,所以每次记得清零
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            print("标签值:",labels)
            print("输出值:",outputs)
            loss.backward()
            optimizer.step()
            train_loss += loss.item() * inputs.size(0)
            ret, predictions = torch.max(outputs.data, 1)
            correct_counts = predictions.eq(labels.data.view_as(predictions))
            acc = torch.mean(correct_counts.type(torch.FloatTensor))
            train_acc += acc.item() * inputs.size(0)
 
        with torch.no_grad():
            model.eval()
 
            for j, (inputs, labels) in enumerate(tqdm(valid_data)):
                inputs = inputs.to(device)
                labels = labels.to(device)
                outputs = model(inputs)
                loss = loss_function(outputs, labels)
                valid_loss += loss.item() * inputs.size(0)
                ret, predictions = torch.max(outputs.data, 1)
                correct_counts = predictions.eq(labels.data.view_as(predictions))
                acc = torch.mean(correct_counts.type(torch.FloatTensor))
                valid_acc += acc.item() * inputs.size(0)
 
        avg_train_loss = train_loss/train_data_size
        avg_train_acc = train_acc/train_data_size
 
        avg_valid_loss = valid_loss/valid_data_size
        avg_valid_acc = valid_acc/valid_data_size
 
        history.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])
 
        if best_acc < avg_valid_acc:
            best_acc = avg_valid_acc
            best_epoch = epoch + 1
 
        epoch_end = time.time()
 
        print("Epoch: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation: Loss: {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(
            epoch+1, avg_valid_loss, avg_train_acc*100, avg_valid_loss, avg_valid_acc*100, epoch_end-epoch_start
        ))
        print("Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))
 
        torch.save(model, 'models/'+dataset+'_model_'+str(epoch+1)+'.pt')
    return model, history
 
num_epochs = 100 #训练周期数
trained_model, history = train_and_valid(resnet50, loss_func, optimizer, num_epochs)
torch.save(history, 'models/'+dataset+'_history.pt')
 
history = np.array(history)
plt.plot(history[:, 0:2])
plt.legend(['Tr Loss', 'Val Loss'])
plt.xlabel('Epoch Number')
plt.ylabel('Loss')
plt.ylim(0, 1)
plt.savefig(dataset+'_loss_curve.png')
plt.show()
 
plt.plot(history[:, 2:4])
plt.legend(['Tr Accuracy', 'Val Accuracy'])
plt.xlabel('Epoch Number')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.savefig(dataset+'_accuracy_curve.png')
plt.show()

测试:图片名改下即可。

import torch
from torchvision import  models, transforms
import torch.nn as nn
import cv2
classes = ["1","2","3","4","5","6","7","8","9"] #识别种类名称(顺序要与训练时的数据导入编号顺序对应,可以使用datasets.ImageFolder().class_to_idx来查看)
 
transf = transforms.ToTensor()
device = torch.device('cuda:0')
num_classes = 2
model_path = "models/skin-cancer-detection_model_3.pt"
image_input = cv2.imread("ISIC_0000019.jpg")
image_input = transf(image_input)
image_input = torch.unsqueeze(image_input,dim=0).cuda()
#搭建模型
resnet50 = models.resnet50(pretrained=True)
for param in resnet50.parameters():
    param.requires_grad = False
 
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(
    nn.Linear(fc_inputs, 256),
    nn.ReLU(),
    nn.Dropout(0.4),
    nn.Linear(256, num_classes),
    nn.LogSoftmax(dim=1)
)
resnet50 = torch.load(model_path)
 
outputs = resnet50(image_input)
value,id =torch.max(outputs,1)
print(outputs,"\n","结果是:",classes[id])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/279778.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

人工神经网络

前言 人工神经网络(Artificial Neural Network&#xff0c;ANN)&#xff0c;通常简称为神经网络&#xff0c;是一种在生物神经网络的启示下建立的数据处理模型。神经网络由大量的人工神经元相互连接进行计算&#xff0c;根据外界的信息改变自身的结构&#xff0c;主要通过调整…

【金猿案例展】昆仑银行——一体化智能可观测平台全面保障昆仑银行业务稳定性...

‍ 博睿数据案例 本项目案例由博睿数据投递并参与“数据猿年度金猿策划活动——2023大数据产业年度创新服务企业榜单/奖项”评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 根据中国人民银行&#xff0c;中国银保监会颁布的【关于金融行业贯彻<推进互联网协议第六版…

【JavaEE进阶】 @RequestMapping注解

文章目录 &#x1f384;什么是RequestMapping 注解&#x1f333;RequestMapping 使⽤&#x1f332;RequestMapping 是GET还是POST请求&#xff1f;&#x1f6a9;使用Postman构造POST请求 ⭕总结 &#x1f384;什么是RequestMapping 注解 在Spring MVC 中使⽤ RequestMapping 来…

使用Google OSV工具扫描依赖安全漏洞

安全漏洞是软件工程化能力的试金石 2021年年底&#xff0c;Log4j的漏洞陆续被公开。因为该框架被大量的开源软件依赖&#xff0c;所以&#xff0c;漏洞影响面非常大。 面对这个漏洞&#xff0c;我们遇到的第一个问题是&#xff1a;如何知道我们哪些工程使用了Log4j&#xff1f;…

基于ssm的程序设计实践项目管理系统+jsp论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本实践项目管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息…

NFC物联网智能学生宿舍系统设计方案

随着物联网技术的不断发展&#xff0c;智慧城市、智能家居、智慧校园的建设也在如火如茶地进行。本文结合物联网发展过程中相关的技术&#xff0c;应用到智慧校园的建设过程中&#xff0c;将学生宿舍打造成舒适、安全的集体空间&#xff0c;该系统可以对学生宿舍实现智能开门、…

华为发布的工业软件三大难题:适用于CAD领域的NURBS裁剪曲面自交快速检测

以下内容转载&#xff1a; 自相交&#xff0c;在几何图形有效性验证中的一个错误类型&#xff0c;面要素的自相交在原始数据中是最常见的&#xff0c;这种错误有些可以人工发现&#xff0c;但有些就需要借助程序来发现。 发生自相交的根本原因情况比较多&#xff0c;有些是因为…

微服务全链路灰度方案介绍

目录 一、单体架构下的服务发布 1.1 蓝绿发布 二、微服务架构下的服务发布 三、微服务场景下服务发布的问题 四、全链路灰度解决方案 4.1 物理环境隔离 4.2 逻辑环境隔离 4.3 全链路灰度方案实现技术 4.3.1 标签路由 4.3.2 节点打标 4.3.3 流量染色 4.3.4 分布式链路…

[NISACTF 2022]checkin

[NISACTF 2022]checkin wp 进入页面看到源代码&#xff1a; 尝试直接 GET 传参&#xff0c;但是失败了。 题目中给出了提示&#xff1a; 那么就复制源码&#xff0c;再粘贴成文本&#xff1a; 可以看到代码发生了变化&#xff0c;部分代码顺序颠倒。 以 Notepad 编辑&#x…

Java设计模式-外观模式

目录 一、影院管理项目 二、外观模式 &#xff08;一&#xff09;基本介绍 &#xff08;二&#xff09;原理类图 &#xff08;三&#xff09;解决影院管理 &#xff08;四&#xff09;注意事项和细节 &#xff08;五&#xff09;外观模式在MyBatis框架应用的源码分析 一…

【工具】windeployqt 在windows + vscode环境下打包

目录 0.背景简介 1.windeployqt简介 2.打包具体过程 1&#xff09;用vscode编译&#xff0c;生成Release文件夹&#xff08;也有Debug文件夹&#xff0c;但是发布版本一般都是用Release&#xff09; 2&#xff09;此时可以看下Release文件夹内&#xff0c;一般是.exe可执行…

LeetCode---377周赛---Floyd算法+字典树

题目列表 2974. 最小数字游戏 2975. 移除栅栏得到的正方形田地的最大面积 2976. 转换字符串的最小成本 I 2977. 转换字符串的最小成本 II 一、最小数字游戏 这题看懂题意就好&#xff0c;可以结合示例模拟一下&#xff0c;你就会发现规律&#xff0c;本质就是将数组排序&a…

【C语言】一篇文章深入解析联合体和枚举且和结构体的区别

文章目录 &#x1f4dd;前言&#x1f320; 联合体类型的声明&#x1f309;联合体的特点 &#x1f320;相同成员的结构体和联合体对⽐&#x1f309;联合体⼤⼩的计算 &#x1f320;联合体应用&#x1f309;枚举类型的声明 &#x1f320;枚举类型的优点&#x1f309; 枚举类型的使…

PostgreSQL10数据库源码安装及plpython2u、uuid-ossp插件安装

PostgreSQL10数据库源码安装及plpython2u、uuid-ossp插件安装 1、环境2、安装包下载3、安装3.1 、解压3.2、配置3.3、编译安装3.4 、启动与关闭 4、安装 uuid-ossp 、plpython2u插件5、参考 1、环境 centos 7 、 postgresql 10.19 2、安装包下载 postgres 源码安装包 3、安…

Git基础学习_p1

文章目录 一、前言二、Git手册学习2.1 Git介绍&前置知识2.2 Git教程2.2.1 导入新项目2.2.2 做更改2.2.3 Git追踪内容而非文件2.2.4 查看项目历史2.2.5 管理分支&#x1f53a;2.2.6 用Git来协同工作2.2.7 查看历史 三、结尾 一、前言 Git相信大部分从事软件工作的人都听说过…

共享单车之数据存储

文章目录 第1关&#xff1a;获取工作簿中的数据第2关&#xff1a;保存共享单车数据 第1关&#xff1a;获取工作簿中的数据 相关知识 获取工作簿中的信息&#xff0c;我们可以使用Java POI&#xff08;POI是一个提供API给Java程序对Microsoft Office格式档案读和写的功能&#…

[数据结构]树与二叉树的性质

文章目录 0.二叉树的形态和基本性质1.完全二叉树的叶子节点个数2.树的叶子节点个数3.线索二叉树4.树和森林和二叉树5.平衡二叉树的最少结点数6.树/二叉树/森林的转换 0.二叉树的形态和基本性质 一棵二叉树具有5中基本形态n个结点可以构造的二叉树种数: C2n-n/n1 一棵树 n个结点…

GC6208国产5V摄像机镜头驱动IC ,可用于摄像机,机器人等产品中可替代AN41908

GC6208是一个镜头电机驱动IC摄像机和安全摄像机。该设备集成了一个直流电机驱动器的Iris的PID控制系统&#xff0c;也有两个通道的STM电机驱动器的变焦和对焦控制。 芯片的特点: 内置用于Iris控制器的直流电机驱动器 内置2个STM驱动程序&#xff0c;用于缩放和…

【SD】inpaint 模型 - 换脸术 ☑

文生图-局部重绘 涂抹脸部 关键词添加lora&#xff1a; <lora:Naruto_zilaiye:1.5>, 生成图&#xff1a;

【音视频 ffmpeg 学习】 跑示例程序 持续更新中

环境准备 在上一篇文章 把mux.c 拷贝到main.c 中 使用 attribute(unused) 消除警告 __attribute__(unused)/** Copyright (c) 2003 Fabrice Bellard** Permission is hereby granted, free of charge, to any person obtaining a copy* of this software and associated docu…