YOLO训练results.csv文件可视化(原模型与改进模型对比可视化)

一、单独一个文件可视化(源码对应utils文件夹下的plots.py文件的plot_results类)

from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
def plot_results(file='runs/train/exp9/results.csv', dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob(file))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    for fi, f in enumerate(files):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results.png', dpi=200)  #修改保存路径
    plt.close()
 
 
if __name__ == '__main__':
    plot_results(file='results.csv')   #该python文件位于根目录下(此文件和传入文件在同一目录下),注意修改传入文件路径

单独把代码拿出来建立py文件,注意上传文件路径以及文件保存路径。

效果图展示:(results.png文件)

在这里插入图片描述
二、两个results.csv文件对比(经常用于原模型与改进模型训练效果对比):
这里用到了两个csv文件(results.csv(改进模型训练80轮)和results100.csv(原模型训练100轮))

from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
def plot_results(file='runs/train/exp9/results.csv', file2='runs/train/exp9/results100.csv' , dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    save_dir2 = Path(file2).parent if file2 else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob(file))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    files2 = list(save_dir2.glob(file2))
    assert len(files2), f'No results.csv files found in {save_dir2.resolve()}, nothing to plot.'
    for fi, f in enumerate(files):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    for fi, f in enumerate(files2):
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j]
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            print(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results_vs.png', dpi=200)  #修改保存路径
    plt.close()
 
 
if __name__ == '__main__':
    plot_results(file='results.csv',file2='results100.csv')   #该python文件位于根目录下(此文件和传入文件在同一目录下),注意修改传入文件路径

效果图展示:(results_vs.png文件)

在这里插入图片描述
搬运自YOLO训练results.csv文件可视化(原模型与改进模型对比可视化)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/278592.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java IDEA JUnit 单元测试

JUnit是一个开源的 Java 单元测试框架,它使得组织和运行测试代码变得非常简单,利用JUnit可以轻松地编写和执行单元测试,并且可以清楚地看到哪些测试成功,哪些失败 JUnit 还提供了生成测试报告的功能,报告不仅包含测试…

私有部署ELK,搭建自己的日志中心(四)-- kibana展示es的数据

一、说在前面的话 前一篇已把elk的安装连带讲完,本文重在讲述如何在kibana展示es数据。 二、数据的展示 展示es数据库的客户端工具有很多,比如es head插件,但是一说到要查询日志,还是非kibana莫属了。 1、kibana.yml # 服务端…

边缘计算网关:重新定义物联网数据处理

随着物联网(IoT)设备的爆炸式增长,数据处理和分析的需求也在迅速增加。传统的数据处理方式,将所有数据传输到中心服务器进行处理,不仅增加了网络负担,还可能导致数据延迟和安全问题。因此,边缘计…

求解拍频的信号特征

这张图上,时域已经明显产生调幅波的拍频特征。利用宏观的拍频特征可以肉眼识读两个信号的频差: 一秒是69.42个像素。拍频周期是:21.857像素。所以,拍频的周期是:3.7161Hz. 其中一个频率是50Hz,另一个频率…

ACM32F403/F433 12 位多通道国产芯片,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构,支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理,支持单精度FPU处理浮点数据,同时还支持Memory Protection Unit (MPU)用于提升应用的…

【数据结构】七、图

一、概念 图:记为G(V,E) 有向图:每条边都有方向 无向图:边无方向 完全图:每个顶点都与剩下的所有顶点相连 完全有向图有n(n-1)条边;完全无向图有n(n-1)/2条边 带权图:边上标有数值的图 连通图&#…

OpenAI: InstructGPT的简介

OpenAI: InstructGPT paper: 2022.3 Training Language Model to follow instructions with human feedback Model: (1.3B, 6B, 175B) GPT3 一言以蔽之:你们还在刷Benchamrk?我们已经换玩法了!更好的AI才是目标 这里把InstructGPT拆成两个部分&#…

【JavaWeb】day01-HTMLCSS

day01-HTML&CSS HTML 图片标签&#xff1a;<img> src&#xff1a;指定图像URL&#xff08;绝对路径/相对路径&#xff09;width&#xff1a;图像宽度&#xff08;像素/相对于父元素的百分比&#xff09;height&#xff1a;图像高度&#xff08;像素/相对于父元素的百…

STM32CubeMX教程10 RTC 实时时钟 - 周期唤醒、闹钟A/B事件和备份寄存器

目录 1、准备材料 2、实验目标 3、实验流程 3.0、前提知识 3.1、CubeMX相关配置 3.1.1 、时钟树配置 3.1.2、外设参数配置 3.1.3 、外设中断配置 3.2、生成代码 3.2.1、外设初始化函数调用流程 3.2.2、外设中断函数调用流程 3.2.3、添加其他必要代码 4、常用函数 …

k8s之陈述式资源管理

1.kubectl命令 kubectl version 查看k8s的版本 kubectl api-resources 查看所有api的资源对象的名称 kubectl cluster-info 查看k8s的集群信息 kubectl get cs 查看master节点的状态 kubectl get pod 查看默认命名空间内的pod的信息 kubectl get ns 查看当前集群所有的命…

【C语言数组传参】规则详解

目录 数组传参介绍 数组传参规则 数组传参的实参 特殊情况一&#xff1a;sizeof&#xff08;数组名&#xff09; 特殊情况二&#xff1a;&数组名 数组传参的形参 数组传参使用数组名作为形参接收 形参如果是⼀维数组 形参如果是⼆维数组 数组传参使用指针作为形参…

Python 实现 PDF 到 Word 文档的高效转换(DOC、DOCX)

PDF&#xff08;Portable Document Format&#xff09;已成为一种广泛使用的电子文档格式。PDF的主要优势是跨平台&#xff0c;可以在不同设备上呈现一致的外观。然而&#xff0c;当我们需要对文件内容进行编辑或修改&#xff0c;直接编辑PDF文件会非常困难&#xff0c;而且效果…

万界星空科技车间生产管理系统解决方案

车间管理系统解决方案:   &#xff08;一&#xff09;车间生产计划管理解决方案   车间管理系统解决方案对于一般的生产计划&#xff0c;需完成编制、审批、下达、执行、完工等操作&#xff0c;车间管理系统解决方案立足于减少中间环节浪费&#xff0c;节约成本&#xff0c…

Ubuntu22.04系统安装软件、显卡驱动、cuda、cudnn、pytorch

Ubuntu22.04系统安装软件、显卡驱动、cuda、cudnn、pytorch 安装 Nvidia 显卡驱动安装 CUDA安装 cuDNN安装 VSCode安装 Anaconda 并更换源在虚拟环境中安装 GPU 版本的 PyTorchReference 这篇博文主要介绍的是 Ubuntu22.04 系统中软件、显卡驱动、cuda、cudnn、pytorch 等软件和…

uniapp+echarts开发APP版本教程

需求 需要在uniappecharts展示图表功能&#xff0c;是APP版本&#xff0c;不是小程序。找了好多教程都乱七八糟的&#xff0c;无法实现。以下是效果图 教程 1、安装插件 HBuilder安装echarts插件&#xff0c;插件地址如下。安装完成后在uni_modules/lime-echart文件夹下 ht…

7.6分割回文串(LC131-M)

算法&#xff1a; 有很多分割结果&#xff0c;按照for循环去做肯定做不来 这个时候就要想到回溯&#xff01;那就要画树&#xff01; 画树 分割的画树过程其实和组合很像。 例如对于字符串aab&#xff1a; 组合问题&#xff1a;选取一个a之后&#xff0c;在ab中再去选取第…

彻底理解前端安全面试题(1)—— XSS 攻击,3种XSS攻击详解,建议收藏(含源码)

前言 前端关于网络安全看似高深莫测&#xff0c;其实来来回回就那么点东西&#xff0c;我总结一下就是 3 1 4&#xff0c;3个用字母描述的【分别是 XSS、CSRF、CORS】 一个中间人攻击。当然 CORS 同源策略是为了防止攻击的安全策略&#xff0c;其他的都是网络攻击。除了这…

【深度学习-图像分类】02 - AlexNet 论文学习与总结

论文地址&#xff1a;ImageNet Classification with Deep Convolutional Neural Networks 论文学习 1. 摘要 本研究训练了一个大型深度卷积神经网络&#xff08;CNN&#xff09;&#xff0c;用于对ImageNet LSVRC-2010比赛中的1.2百万高分辨率图像进行分类&#xff0c;这些图…

nginx设置跨域访问

目录 一&#xff1a;前端请求 二&#xff1a;后端设置 网站架构前端使用jquery请求&#xff0c;后端使用nginxphp-fpm 一&#xff1a;前端请求 <script> $.getJSON(http://nngzh.youjoy.com/cc.php, { openid: sd, }, function(res) { alert(res); if(res.code 0) …

GLTF 编辑器实现逼真3D动物毛发效果

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 要实现逼真的3D动物毛发效果&#xff0c;可以采用以下技术和方法&…