概率论相关题型

文章目录

  • 概率论的基本概念
    • 放杯子问题
    • 条件概率与重要公式的结合
    • 独立的运用
  • 随机变量以及分布
    • 离散随机变量的分布函数特点
    • 连续随机变量的分布函数在某一点的值为0
    • 正态分布标准化
    • 随机变量函数的分布
  • 多维随机变量以及分布
    • 条件概率
    • max 与 min 函数的相关计算
    • 二维随机变量
    • 二维随机变量求边缘概率密度
    • 独立性
    • Z = X + Y
    • max{X,Y}
    • 离散二维随机变量的条件概率以及max 与min
  • 随机变量的数字特征

概率论的基本概念

  • 1.互斥事件(互不相容)与对立事件:A 与 B 的交集为空集,A 和 B 不可能同时发生,区别于对立事件(在互斥事件的基础上,A 和 B 的和为全集)
  • 对于互斥事件有 P(A + B + C ··· + Z) = P(A) + P(B) + P( C) + ··· + P(Z)
  • 对于一般的不是互斥,P(A+B) = P(A) + P(B ) - P(AB)这里不是P(A)*P(B) ,三个变量
    P(A+B+C) = P(A) + P(B) + P© -P(AB) -P(AC) -P(BC) +P(ABC)
  • 古典概型,条件概率,三个重要的公式:乘法公式,全概率公式(化整为零),贝叶斯公式(利用先验概率求后验概率)
  • 事件的独立性:P(AB) = P(A)P(B) ,三个事件的独立性要有四个式子成立------> n 各事件相互独立,则任意的2到n-1 的事件都相互独立,替换成对立事件也是成立的
  • P(AB) = P(A) - P(AB非) 这个式子通过包含关系直接推出

在这里插入图片描述

  • 为什么分母不使用12*11*10 ,分析,使用这个的话要注意 ,其实这个是A(3,10),那么就是讲究顺序的了,由于筛选是最终的结果,是不讲究顺序的,只能用C(3,10)

放杯子问题

  • 将三个小球放进4各杯子,问杯中的最大小球个数分别为1,2,3的概率

站在小球的角度,选择杯子

  • 对于1:那么就是432 / 444
  • 对于3 :就是C(1,4) / 444
  • 对于2: 就是1 - P(1) - P(3)

条件概率与重要公式的结合

在这里插入图片描述
在这里插入图片描述

  • 可能一开始对于 求P(A2) 没有什么思路,搞不清楚应该怎么算,这时可以考虑用全概率公式

在这里插入图片描述

独立的运用

在这里插入图片描述

随机变量以及分布

  • 注意区分离散型随机变量:二项分布,(0-1)分布,泊松分布,注意对它们分布列以及分布函数的求解(端点值?)
  • 连续随机变量:均匀分布,指数分布,正态分布
  • 指数分布是没有记忆性的P{X>s+t|X>s} = P{X>t}
  • 二项分布的趋近为(np)泊松分布和正态分布
  • 正态分布在u= 0 ,方差为1 时称为标准的正态分布

在这里插入图片描述

离散随机变量的分布函数特点

在这里插入图片描述
在这里插入图片描述

  • 注意离散型随机变量的分布律与分布函数的关系

连续随机变量的分布函数在某一点的值为0

在这里插入图片描述

正态分布标准化

在这里插入图片描述

  • 注意对带有绝对值的转换,以及带有负数的转换

随机变量函数的分布

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 对于函数是单调的话,可以使用公式法快速求解,如果不是单调的话,就按照定义一步步求解
  • 注意开始计算的时候,要提前确定好,Y 的范围,是否直接大于0,还是什么范围

多维随机变量以及分布

  • 边缘分布:其中 Z = X + Y ,所得到的z 的边缘分布被称为卷积公式
  • 对于 M =max{X,Y} 与 N = min{X,Y} 的分布函数的求法,其中X,Y 相互独立,且各自的分布函数Fx(x) 与 Fy(y) 那么有 F max(z) = Fx(x) * Fy(y) Fmin(z) = 1- (1-Fx(x))*(1-Fy(y))
    对于上面的情况可以推广到 n 各相互独立的随机变量 ,都可以成立
  • 最主要的是要分清,到底式子的形式是概率密度还是分布函数

条件概率

在这里插入图片描述

max 与 min 函数的相关计算

在这里插入图片描述

  • 0.84 0.16

二维随机变量

  • 对于开始的未知数的求解:分布函数的整体为1
  • (1)对于X,Y 的确切的值的,就在相对应的面积范围内求解
  • (2)对于边缘分布的,一方为给出的范围,另一方则为全部范围
  • (3)像下面的第四题,其实的真正的目的,就是给x,y 一个更加具体的一个范围进行求解

在这里插入图片描述
在这里插入图片描述

二维随机变量求边缘概率密度

  • 以下面的第二问为例子:当你求x 的边缘概率密度时,你要把x 当作一个已经已知范围的一个常量,实际上y 才是你的变量,这就好比你其实是在求一条线(每当x 确定的时候),所以在求积分的上下限的时候,这时得到的应该是变量y 关于 x 的范围 , 也就是[x^2 , 1] ,当你求y 的概率密度的时候,y 就变成了常量,积分的上下限应该是变量x 关于常量 y 的一个范围,也就是[ - 根号 y, 根号y ]

在这里插入图片描述

独立性

  • 对于独立性的证明,就按照定义来即可,分布函数或者概率密度都可以

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 简单的分析:由一开始的独立性,得出f(x,y),对于后面的z ,其实 z 的取值范围已经给出,所谓的求分布律就是让你求相对应的概率,这个概率也就是f(x,y) 相对应的概率

Z = X + Y

  • 卷积的两种方法都是等价的,不过下面的第一种方法相对来说更加简单,计算以及运算的过程在于你的选择
  • 利用公式来求,同样地,与求边缘概率密度一样,这里将z 看成常量,x 和 y 是看成以 z 为变量的一个函数,有时候是要进行分段进行一个计算
  • 并不建议一个大括号直接运算完成,而是以z 的范围作为分隔,一个个进行计算

在这里插入图片描述
在这里插入图片描述

max{X,Y}

  • 注意最后的时候的变量都替换成u 了

在这里插入图片描述
在这里插入图片描述

离散二维随机变量的条件概率以及max 与min

  • 在离散随机变量中,条件概率的理解 p{X = 2| Y = 2} 由于是在Y = 2 的条件下,那么就要将Y = 2 的全部情况算进去(不止一个x) ,但是X = 2 的话,就只是一个x ,同理是可以类推到连续的随机变量的
  • 对于离散型的max 与min 的话,不如直接列举进行一个计算,连续型才用公式
    在这里插入图片描述
    在这里插入图片描述

随机变量的数字特征

  • (1) 懂得离散型随机变量与连续型随机变量的期望的求法
  • (2)随机变量的函数的数学期望:对于离散型,直接将每个取值代入函数,得到新的取值,再和相对应的概率相乘再相加即可;对于连续型随机变量,直接对g(x)f(x) 进行积分 ,(区别于f(x) 自身的期望, xf(x) 的积分
  • (3)对于二维的随机变量:对于离散型,就是相对应的取值乘概率后相加;对于连续型就变成 对g(x,y)f(x,y) 的一个求积分的过程
  • (4) 注意期望的相关计算的公式:E(x+y) = E(x) + E(y) (减号也是一样) E(XY) = E(X)E(Y) 当X,Y 相互独立的时候成立 (这两个公式均可以推广)
  • (5)方差 D(x) = E{[X-E(X)]^2} ,就是每一个取值与期望的差的平方的期望,它的算数平方根为均方差
    当计算离散随机变量的时候,[X-E(X)]^2 乘相对应的概率再求和即可; 连续型的时候 [X-E(X)] ^2 乘f(x) 的积分
  • 由于计算方差难度问题,常常用 D(X) = E(X^2) - [E(X)]^2 来计算
  • 方差的相关性质:常数的方差为0, D(cX) = c^2 D(X) D(C+ X) = D(X)
    D(X+Y ) = D(X) + D(Y) + 2E{(X-E(x))(Y-E(y))}
    D(X-Y ) = D(X) + D(Y) - 2E{(X-E(x))(Y-E(y))}
    当X ,Y 相互独立的时候,D(X+Y) = D(X-Y) = D(X) + D(Y)
  • 标准化的随机变量,就是 X- E(X) / 均方差
  • 协方差 Cov(X,Y) = E{(X-E(x))(Y-E(y))} 相关系数 = Cov(X,Y) /X 的均方差乘Y的均方差
  • 协方差可以写成 Cov(X,Y) = E(XY) - E(X)E(Y)
  • 协方差的相关性质 Cov(aX,bY) = abCov(X,Y) Cov(X1+X2,Y) = Cov(X1,Y) + Cov(X2+Y)
  • 相关系数 = 0 时,称为X 与 Y 不相关(就是X 与 Y 没有线性关系,但是可能会存在其他的关系)
  • 相互独立可以推出不相关,但是不相关推不出相互独立, 不相关 与 相关系数 = 0,Cov(X,Y) =0 E(XY) = E(X)E(Y)
  • 对于二维正态随机变量的相互独立与不相关的条件是相互等价的
    在这里插入图片描述
  • 矩、协方差矩:分清k 阶原点矩,k 阶中心距,k+l 阶混合矩 k + l 阶混合中心矩

在这里插入图片描述

  • 切比雪夫不等式给出了再随机变量X 的分布未知,只知道E(X) 与D(X) 的情况下,对E{|X-E(X)|<=m} 概率的下限的估计

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/277565.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UWB高精度人员定位系统源码,全方位护航安全生产

定位管理系统使用UWB定位技术&#xff0c;通过在厂区安装定位基站&#xff0c;为人员或设备佩戴定位标签的形式&#xff0c;实现人员精准实时定位。可以实现人员、车辆物资实时定位、工作考勤、电子围栏、历史轨迹回放、巡检巡查、物资盘点、路径规划、三维显示等&#xff0c;以…

JAVA B/S架构智慧工地源码,PC后台管理端、APP移动端

智慧工地系统充分利用计算机技术、互联网、物联网、云计算、大数据等新一代信息技术&#xff0c;以PC端&#xff0c;移动端&#xff0c;设备端三位一体的管控方式为企业现场工程管理提供了先进的技术手段。让劳务、设备、物料、安全、环境、能源、资料、计划、质量、视频监控等…

【小白专用】C# 压缩文件 ICSharpCode.SharpZipLib.dll效果:

插件描述&#xff1a; ICSharpCode.SharpZipLib.dll 是一个完全由c#编写的Zip, GZip、Tar 、 BZip2 类库,可以方便地支持这几种格式的压缩解压缩, SharpZipLib 的许可是经过修改的GPL&#xff0c;底线是允许用在不开源商业软件中&#xff0c;意思就是免费使用。具体可访问ICSha…

【AI】文本转语音 变声 音色克隆 数字人音视频口型同步AI应用

文本转语音 项目地址&#xff1a;https://github.com/coqui-ai/TTS 环境安装&#xff1a; 下载项目&#xff1b;安装Python&#xff0c;安装项目依赖&#xff1a; pip install TTS 1. 下载安装AI模型&#xff1a; https://github.com/facebookresearch/fairseq/tree/main…

大数据框架数仓Doris学习网站,让你轻松掌握数据仓库技能。

介绍&#xff1a;Doris是一款基于大规模并行处理技术的分布式SQL数据库&#xff0c;由百度开源&#xff0c;主要用于实时数据仓库和多维分析。它是一款大数据分析引擎&#xff0c;适用于实时分析场景&#xff0c;支持多种数据接入和输出&#xff0c;提供丰富的核心特性和性能优…

面试算法77:链表排序

题目 输入一个链表的头节点&#xff0c;请将该链表排序。 分析 归并排序的主要思想是将链表分成两个子链表&#xff0c;在对两个子链表排序后再将它们合并成一个排序的链表。 这里可以用快慢双指针的思路将链表分成两半。如果慢指针一次走一步&#xff0c;快指针一次走两步…

【Midjourney】Midjourney根据prompt提示词生成人物图片

目录 &#x1f347;&#x1f347;Midjourney是什么&#xff1f; &#x1f349;&#x1f349;Midjourney怎么用&#xff1f; &#x1f514;&#x1f514;Midjourney提示词格式 Midjourney生成任务示例 例1——航空客舱与乘客 prompt prompt翻译 生成效果 大图展示 细节大…

见证创新实力!安全狗云甲荣获“ISC 数字安全创新能力百强”

12月27日&#xff0c;数字安全技术创新论坛暨ISC 2023数字安全创新能力百强颁奖典礼在北京顺利举办。 作为国内云原生安全领导厂商&#xff0c;安全狗也受邀出席此次活动。 厦门服云信息科技有限公司&#xff08;品牌名&#xff1a;安全狗&#xff09;创办于2013年&#xff0c;…

基于YOLOv8的遥感SAR舰船小目标识别

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文摘要&#xff1a;基于YOLOv8的遥感SAR舰船小目标&#xff0c;阐述了整个数据制作和训练可视化过程 1.YOLOv8介绍 Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的…

【SpringBoot篇】详解Bean的管理(获取bean,bean的作用域,第三方bean)

文章目录 &#x1f354;Bean的获取&#x1f384;注入IOC容器对象⭐代码实现&#x1f6f8;根据bean的名称获取&#x1f6f8;根据bean的类型获取&#x1f6f8;根据bean的名称和类型获取 &#x1f384;Bean的作用域⭐代码实现&#x1f388;注意 &#x1f384;第三方Bean⭐代码实现…

Spring系列学习四、Spring数据访问

Spring数据访问 一、Spring中的JDBC模板介绍1、新建SpringBoot应用2、引入依赖&#xff1a;3、配置数据库连接&#xff0c;注入dbcTemplate对象&#xff0c;执行查询&#xff1a;4&#xff0c;测试验证&#xff1a; 二、整合MyBatis Plus1&#xff0c;在你的项目中添加MyBatis …

企业跨境数据传输的创新技术和应用领域

在当前数字化时代&#xff0c;跨境数据传输成为一个极为关键的领域。随着数据传输需求的不断增加&#xff0c;跨国企业在这一过程中面临着越来越多的问题。为了解决这些挑战&#xff0c;创新技术层出不穷&#xff0c;为跨境数据传输提供了更高效、安全和可靠的解决方案。本文将…

FAST-LIO论文解析

题目&#xff1a;FAST-LIO&#xff1a;一种快速鲁棒的基于紧耦合迭代卡尔曼滤波的雷达-惯导里程计 摘要 本文提出了一种计算效率高、鲁棒性好的激光-惯性里程计框架。我们使用紧耦合的迭代扩展卡尔曼滤波器将LiDAR特征点与IMU数据融合在一起&#xff0c;从而在快速运动、嘈杂…

XHR与Fetch的功能异同点列表

XHR与Fetch的功能异同点列表

Flink Shuffle、Spark Shuffle、Mr Shuffle 对比

总结&#xff1a; 1、Flink ShufflePipelined Shuffle&#xff1a;上游 Subtask 所在 TaskManager 直接通过网络推给下游 Subtask 的 TaskManager&#xff1b;Blocking Shuffle&#xff1a; Hash Shuffle-将数据按照下游每个消费者一个文件的形式组织&#xff1b; Sort-Merge …

《论文阅读:Backdoor Attacks Against Dataset Distillation》

数据浓缩下的后门攻击 1. 摘要 数据集蒸馏已成为训练机器学习模型时提高数据效率的一项重要技术。它将大型数据集的知识封装到较小的综合数据集中。在这个较小的蒸馏数据集上训练的模型可以获得与在原始训练数据集上训练的模型相当的性能。然而&#xff0c;现有的数据集蒸馏技…

下载完redis每次启动项目必须打开redis服务,否则不能运行,解决方法

redis-server.exe --service-install redis.windows.conf 在redis的目录启动终端运行此命令可以下载redis服务&#xff0c;然后在服务里面启动redis服务&#xff0c;之后就可以不用打开小黑框再启动了 redis下载地址&#xff1a; Redis下载安装教程_redis 3.2下载-CSDN博客

C++面试宝典第11题:两数之和

题目 给定一个整数数组和一个目标值,请在该数组中找出和为目标值的那两个整数,并返回他们的数组下标,要求时间复杂度为O(n)。可以假设每种输入只会对应一个答案,注意:不能重复利用这个数组中同样的元素。 解析 这道题主要考察应聘者对算法时间复杂度和空间复杂度的理解,时…

SCT82630DHKR——5.5V-65V Vin同步降压控制器,可替代LM5145

描述&#xff1a; SCT82630是一款65V电压模式控制同步降压控制器&#xff0c;具有线路前馈。40ns受控高压侧MOSFET的最小导通时间支持高转换比&#xff0c;实现从48V输入到低压轨的直接降压转换&#xff0c;降低了系统复杂性和解决方案成本。如果需要&#xff0c;在低至6V的输…

【第十二课】KMP算法(acwing-831 / c++代码 / 思路 / 视频+博客讲解推荐)

目录 暴力做法 代码如下 KMP算法 不同的next求法-----视频讲解/博客推荐 视频推荐 博客推荐 课本上的方法- prefix的方法- 求next数组思路---next数组存放前缀表的方式 s和p匹配思路 代码如下 暴力做法 遍历s主串中每一个元素&#xff0c;如果该元素等于模板串p中…