工具系列:TensorFlow决策森林_(8)组合决策森林和神经网络模型

文章目录

    • 介绍
    • 安装 TensorFlow Decision Forests
    • 导入库
    • 数据集
    • 模型结构
    • 模型训练
    • 评估决策森林
    • 下一步是什么?

介绍

欢迎来到TensorFlow Decision Forests(TF-DF)的模型组合教程。本教程将向您展示如何使用通用的预处理层和Keras函数式API将多个决策森林和神经网络模型组合在一起。

您可能希望将模型组合在一起以提高预测性能(集成),以获得不同建模技术的最佳效果(异构模型集成),在不同数据集上训练模型的不同部分(例如预训练),或创建堆叠模型(例如,一个模型在另一个模型的预测上操作)。

本教程涵盖了使用函数式API进行模型组合的高级用例。您可以在本教程的“特征预处理”部分和本教程的“使用预训练文本嵌入”部分中找到更简单的模型组合场景的示例。

以下是您将构建的模型的结构:

# 安装graphviz库
!pip install graphviz -U --quiet

# 导入graphviz库中的Source类
from graphviz import Source

# 创建一个Source对象,传入一个字符串表示的dot语言图形描述
Source("""
digraph G {
  raw_data [label="Input features"];  # 创建一个节点,表示原始数据
  preprocess_data [label="Learnable NN pre-processing", shape=rect];  # 创建一个节点,表示可学习的神经网络预处理

  raw_data -> preprocess_data  # 原始数据指向神经网络预处理节点

  subgraph cluster_0 {
    color=grey;
    a1[label="NN layer", shape=rect];  # 创建一个节点,表示神经网络层
    b1[label="NN layer", shape=rect];  # 创建一个节点,表示神经网络层
    a1 -> b1;  # 神经网络层之间的连接
	label = "Model #1";  # 设置子图的标签为"Model #1"
  }

   subgraph cluster_1 {
    color=grey;
    a2[label="NN layer", shape=rect];  # 创建一个节点,表示神经网络层
    b2[label="NN layer", shape=rect];  # 创建一个节点,表示神经网络层
    a2 -> b2;  # 神经网络层之间的连接
	label = "Model #2";  # 设置子图的标签为"Model #2"
  }

  subgraph cluster_2 {
    color=grey;
    a3[label="Decision Forest", shape=rect];  # 创建一个节点,表示决策森林
	label = "Model #3";  # 设置子图的标签为"Model #3"
  }

  subgraph cluster_3 {
    color=grey;
    a4[label="Decision Forest", shape=rect];  # 创建一个节点,表示决策森林
	label = "Model #4";  # 设置子图的标签为"Model #4"
  }

  preprocess_data -> a1;  # 神经网络预处理节点指向神经网络层节点
  preprocess_data -> a2;  # 神经网络预处理节点指向神经网络层节点
  preprocess_data -> a3;  # 神经网络预处理节点指向决策森林节点
  preprocess_data -> a4;  # 神经网络预处理节点指向决策森林节点

  b1  -> aggr;  # 神经网络层节点指向聚合节点
  b2  -> aggr;  # 神经网络层节点指向聚合节点
  a3 -> aggr;  # 决策森林节点指向聚合节点
  a4 -> aggr;  # 决策森林节点指向聚合节点

  aggr [label="Aggregation (mean)", shape=rect]  # 创建一个节点,表示聚合操作(平均值)
  aggr -> predictions  # 聚合节点指向预测结果节点
}
""")

在这里插入图片描述

你的组合模型有三个阶段:

  1. 第一阶段是一个预处理层,由神经网络组成,对下一阶段的所有模型都是共同的。在实践中,这样的预处理层可以是一个预训练的嵌入层进行微调,也可以是一个随机初始化的神经网络。
  2. 第二阶段是两个决策森林和两个神经网络模型的集合。
  3. 最后一个阶段是对第二阶段模型的预测进行平均。它不包含任何可学习的权重。

神经网络使用反向传播算法和梯度下降进行训练。该算法具有两个重要特性:(1)如果神经网络层接收到损失梯度(更精确地说,是根据该层的输出计算的损失梯度),则该层可以进行训练;(2)该算法将损失梯度从层的输出“传递”到层的输入(这是“链式法则”)。由于这两个原因,反向传播可以同时训练多层神经网络堆叠在一起。

在这个例子中,决策森林是使用随机森林(RF)算法进行训练的。与反向传播不同,RF的训练不会将损失梯度从其输出传递到其输入。因此,传统的RF算法不能用于训练或微调神经网络。换句话说,“决策森林”阶段不能用于训练“可学习的NN预处理块”。

  1. 训练预处理和神经网络阶段。
  2. 训练决策森林阶段。

安装 TensorFlow Decision Forests

通过运行以下单元格来安装 TF-DF。

!pip install tensorflow_decision_forests -U --quiet

Wurlitzer 是在Colabs中显示详细的训练日志所需的(当在模型构造函数中使用verbose=2时)。

# 安装wurlitzer库,用于在Jupyter Notebook中显示命令行输出信息
!pip install wurlitzer -U --quiet

导入库

# 导入所需的库

# 导入tensorflow_decision_forests库
import tensorflow_decision_forests as tfdf

# 导入其他库
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt

数据集

在本教程中,您将使用一个简单的合成数据集,以便更容易解释最终的模型。

# 定义函数make_dataset,用于生成数据集
# 参数:
#   - num_examples: 数据集中的样本数量
#   - num_features: 每个样本的特征数量
#   - seed: 随机种子,用于生成随机数
# 返回值:
#   - features: 生成的特征矩阵,形状为(num_examples, num_features)
#   - labels: 生成的标签矩阵,形状为(num_examples,)

def make_dataset(num_examples, num_features, seed=1234):
    # 设置随机种子
    np.random.seed(seed)
    
    # 生成特征矩阵,形状为(num_examples, num_features)
    features = np.random.uniform(-1, 1, size=(num_examples, num_features))
    
    # 生成噪声矩阵,形状为(num_examples,)
    noise = np.random.uniform(size=(num_examples))
    
    # 计算左侧部分
    left_side = np.sqrt(
        np.sum(np.multiply(np.square(features[:, 0:2]), [1, 2]), axis=1))
    
    # 计算右侧部分
    right_side = features[:, 2] * 0.7 + np.sin(
        features[:, 3] * 10) * 0.5 + noise * 0.0 + 0.5
    
    # 根据左侧和右侧的大小关系,生成标签矩阵
    labels = left_side <= right_side
    
    # 将标签矩阵转换为整数类型,并返回特征矩阵和标签矩阵
    return features, labels.astype(int)

生成一些示例:

make_dataset(num_examples=5, num_features=4)
(array([[-0.6169611 ,  0.24421754, -0.12454452,  0.57071717],
        [ 0.55995162, -0.45481479, -0.44707149,  0.60374436],
        [ 0.91627871,  0.75186527, -0.28436546,  0.00199025],
        [ 0.36692587,  0.42540405, -0.25949849,  0.12239237],
        [ 0.00616633, -0.9724631 ,  0.54565324,  0.76528238]]),
 array([0, 0, 0, 1, 0]))

您还可以绘制它们以了解合成模式的大致情况:

# 生成数据集
plot_features, plot_label = make_dataset(num_examples=50000, num_features=4)

# 设置图形大小
plt.rcParams["figure.figsize"] = [8, 8]

# 设置散点图的公共参数
common_args = dict(c=plot_label, s=1.0, alpha=0.5)

# 创建子图1,并绘制散点图
plt.subplot(2, 2, 1)
plt.scatter(plot_features[:, 0], plot_features[:, 1], **common_args)

# 创建子图2,并绘制散点图
plt.subplot(2, 2, 2)
plt.scatter(plot_features[:, 1], plot_features[:, 2], **common_args)

# 创建子图3,并绘制散点图
plt.subplot(2, 2, 3)
plt.scatter(plot_features[:, 0], plot_features[:, 2], **common_args)

# 创建子图4,并绘制散点图
plt.subplot(2, 2, 4)
plt.scatter(plot_features[:, 0], plot_features[:, 3], **common_args)
<matplotlib.collections.PathCollection at 0x7fad984548e0>

请注意,这种模式是平滑的,而且不是轴对齐的。这将有利于神经网络模型。这是因为对于神经网络来说,拥有圆形和非对齐的决策边界比决策树更容易。

另一方面,我们将在一个包含2500个示例的小数据集上训练模型。这将有利于决策森林模型。这是因为决策森林更加高效,能够利用所有可用的示例信息(决策森林具有“样本高效性”)。

我们的神经网络和决策森林集成将兼具两者的优点。

让我们创建一个训练和测试的tf.data.Dataset

# 定义函数make_tf_dataset,参数为batch_size和其他参数
def make_tf_dataset(batch_size=64, **args):
  # 调用make_dataset函数,返回features和labels
  features, labels = make_dataset(**args)
  # 使用tf.data.Dataset.from_tensor_slices将features和labels转换为Dataset类型,并按batch_size划分batch
  return tf.data.Dataset.from_tensor_slices(
      (features, labels)).batch(batch_size)

# 定义变量num_features为10

# 调用make_tf_dataset函数,生成训练集train_dataset,包含2500个样本,每个样本包含num_features个特征,每个batch包含100个样本,随机数种子为1234
train_dataset = make_tf_dataset(
    num_examples=2500, num_features=num_features, batch_size=100, seed=1234)

# 调用make_tf_dataset函数,生成测试集test_dataset,包含10000个样本,每个样本包含num_features个特征,每个batch包含100个样本,随机数种子为5678
test_dataset = make_tf_dataset(
    num_examples=10000, num_features=num_features, batch_size=100, seed=5678)

模型结构

将模型结构定义如下:

# 输入特征
raw_features = tf.keras.layers.Input(shape=(num_features,))

# 阶段1
# =======

# 公共可学习的预处理
preprocessor = tf.keras.layers.Dense(10, activation=tf.nn.relu6)
preprocess_features = preprocessor(raw_features)

# 阶段2
# =======

# 模型1:神经网络
m1_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m1_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m1_z1)

# 模型2:神经网络
m2_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m2_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m2_z1)


# 模型3:决策树随机森林
model_3 = tfdf.keras.RandomForestModel(num_trees=1000, random_seed=1234)
m3_pred = model_3(preprocess_features)

# 模型4:决策树随机森林
model_4 = tfdf.keras.RandomForestModel(
    num_trees=1000,
    #split_axis="SPARSE_OBLIQUE", # 取消注释此行以提高该模型的质量
    random_seed=4567)
m4_pred = model_4(preprocess_features)

# 由于TF-DF使用确定性学习算法,您应该将模型的训练种子设置为不同的值,否则两个`tfdf.keras.RandomForestModel`将完全相同。

# 阶段3
# =======

mean_nn_only = tf.reduce_mean(tf.stack([m1_pred, m2_pred], axis=0), axis=0)
mean_nn_and_df = tf.reduce_mean(
    tf.stack([m1_pred, m2_pred, m3_pred, m4_pred], axis=0), axis=0)

# Keras模型
# ============

ensemble_nn_only = tf.keras.models.Model(raw_features, mean_nn_only)
ensemble_nn_and_df = tf.keras.models.Model(raw_features, mean_nn_and_df)
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmpeqn1u3t4 as temporary training directory
Warning: The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)


WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)


Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmpzrq7x74t as temporary training directory
Warning: The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)


WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)

在训练模型之前,您可以绘制它以检查它是否与初始图表相似。

# 导入plot_model函数
from keras.utils import plot_model

# 使用plot_model函数将模型ensemble_nn_and_df可视化,并保存为图片
# 参数to_file指定保存的文件路径为/tmp/model.png
# 参数show_shapes设置为True,表示在可视化图中显示每个层的输入输出形状
plot_model(ensemble_nn_and_df, to_file="/tmp/model.png", show_shapes=True)

模型训练

首先使用反向传播算法训练预处理和两个神经网络层。

%%time
# 编译模型
ensemble_nn_only.compile(
    optimizer=tf.keras.optimizers.Adam(),  # 使用Adam优化器来优化模型的参数
    loss=tf.keras.losses.BinaryCrossentropy(),  # 使用二元交叉熵作为损失函数
    metrics=["accuracy"]  # 使用准确率作为评估指标
)

# 训练模型
ensemble_nn_only.fit(
    train_dataset,  # 使用训练数据集进行训练
    epochs=20,  # 迭代20次
    validation_data=test_dataset  # 使用测试数据集进行验证
)
Epoch 1/20

 1/25 [>.............................] - ETA: 1:49 - loss: 0.5916 - accuracy: 0.7200
18/25 [====================>.........] - ETA: 0s - loss: 0.5695 - accuracy: 0.7556  
25/25 [==============================] - 5s 15ms/step - loss: 0.5691 - accuracy: 0.7500 - val_loss: 0.5662 - val_accuracy: 0.7392
Epoch 2/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5743 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.5510 - accuracy: 0.7574
25/25 [==============================] - 0s 9ms/step - loss: 0.5542 - accuracy: 0.7500 - val_loss: 0.5554 - val_accuracy: 0.7392
Epoch 3/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5623 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.5396 - accuracy: 0.7574
25/25 [==============================] - 0s 9ms/step - loss: 0.5434 - accuracy: 0.7500 - val_loss: 0.5467 - val_accuracy: 0.7392
Epoch 4/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5525 - accuracy: 0.7200
17/25 [===================>..........] - ETA: 0s - loss: 0.5362 - accuracy: 0.7529
25/25 [==============================] - 0s 10ms/step - loss: 0.5342 - accuracy: 0.7500 - val_loss: 0.5384 - val_accuracy: 0.7392
Epoch 5/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5433 - accuracy: 0.7200
18/25 [====================>.........] - ETA: 0s - loss: 0.5244 - accuracy: 0.7556
25/25 [==============================] - 0s 10ms/step - loss: 0.5250 - accuracy: 0.7500 - val_loss: 0.5298 - val_accuracy: 0.7392
Epoch 6/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5338 - accuracy: 0.7200
18/25 [====================>.........] - ETA: 0s - loss: 0.5152 - accuracy: 0.7556
25/25 [==============================] - 0s 10ms/step - loss: 0.5154 - accuracy: 0.7500 - val_loss: 0.5205 - val_accuracy: 0.7392
Epoch 7/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5241 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.5023 - accuracy: 0.7574
25/25 [==============================] - 0s 10ms/step - loss: 0.5053 - accuracy: 0.7500 - val_loss: 0.5107 - val_accuracy: 0.7392
Epoch 8/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5137 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.4921 - accuracy: 0.7574
25/25 [==============================] - 0s 10ms/step - loss: 0.4947 - accuracy: 0.7500 - val_loss: 0.5007 - val_accuracy: 0.7392
Epoch 9/20

 1/25 [>.............................] - ETA: 0s - loss: 0.5029 - accuracy: 0.7200
18/25 [====================>.........] - ETA: 0s - loss: 0.4854 - accuracy: 0.7556
25/25 [==============================] - 0s 10ms/step - loss: 0.4841 - accuracy: 0.7500 - val_loss: 0.4909 - val_accuracy: 0.7392
Epoch 10/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4916 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.4717 - accuracy: 0.7574
25/25 [==============================] - 0s 10ms/step - loss: 0.4738 - accuracy: 0.7500 - val_loss: 0.4815 - val_accuracy: 0.7392
Epoch 11/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4799 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.4618 - accuracy: 0.7574
25/25 [==============================] - 0s 9ms/step - loss: 0.4637 - accuracy: 0.7500 - val_loss: 0.4724 - val_accuracy: 0.7392
Epoch 12/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4680 - accuracy: 0.7200
19/25 [=====================>........] - ETA: 0s - loss: 0.4522 - accuracy: 0.7574
25/25 [==============================] - 0s 9ms/step - loss: 0.4541 - accuracy: 0.7500 - val_loss: 0.4639 - val_accuracy: 0.7392
Epoch 13/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4559 - accuracy: 0.7200
18/25 [====================>.........] - ETA: 0s - loss: 0.4473 - accuracy: 0.7556
25/25 [==============================] - 0s 9ms/step - loss: 0.4453 - accuracy: 0.7500 - val_loss: 0.4561 - val_accuracy: 0.7392
Epoch 14/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4441 - accuracy: 0.7200
18/25 [====================>.........] - ETA: 0s - loss: 0.4392 - accuracy: 0.7556
25/25 [==============================] - 0s 9ms/step - loss: 0.4373 - accuracy: 0.7500 - val_loss: 0.4491 - val_accuracy: 0.7398
Epoch 15/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4332 - accuracy: 0.7300
19/25 [=====================>........] - ETA: 0s - loss: 0.4280 - accuracy: 0.7621
25/25 [==============================] - 0s 10ms/step - loss: 0.4300 - accuracy: 0.7552 - val_loss: 0.4426 - val_accuracy: 0.7439
Epoch 16/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4227 - accuracy: 0.7300
18/25 [====================>.........] - ETA: 0s - loss: 0.4252 - accuracy: 0.7667
25/25 [==============================] - 0s 10ms/step - loss: 0.4234 - accuracy: 0.7624 - val_loss: 0.4366 - val_accuracy: 0.7508
Epoch 17/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4132 - accuracy: 0.7400
19/25 [=====================>........] - ETA: 0s - loss: 0.4153 - accuracy: 0.7753
25/25 [==============================] - 0s 9ms/step - loss: 0.4173 - accuracy: 0.7692 - val_loss: 0.4310 - val_accuracy: 0.7608
Epoch 18/20

 1/25 [>.............................] - ETA: 0s - loss: 0.4047 - accuracy: 0.7500
19/25 [=====================>........] - ETA: 0s - loss: 0.4095 - accuracy: 0.7800
25/25 [==============================] - 0s 9ms/step - loss: 0.4115 - accuracy: 0.7764 - val_loss: 0.4255 - val_accuracy: 0.7752
Epoch 19/20

 1/25 [>.............................] - ETA: 0s - loss: 0.3966 - accuracy: 0.7600
18/25 [====================>.........] - ETA: 0s - loss: 0.4076 - accuracy: 0.7922
25/25 [==============================] - 0s 10ms/step - loss: 0.4059 - accuracy: 0.7880 - val_loss: 0.4201 - val_accuracy: 0.7847
Epoch 20/20

 1/25 [>.............................] - ETA: 0s - loss: 0.3887 - accuracy: 0.7900
19/25 [=====================>........] - ETA: 0s - loss: 0.3981 - accuracy: 0.8053
25/25 [==============================] - 0s 9ms/step - loss: 0.4003 - accuracy: 0.7988 - val_loss: 0.4148 - val_accuracy: 0.7913
CPU times: user 8.67 s, sys: 1.46 s, total: 10.1 s
Wall time: 9.49 s





<keras.src.callbacks.History at 0x7fac640c79a0>

让我们评估仅包括预处理和两个神经网络部分的内容:

# 评估神经网络模型(仅使用NN #1和NN #2)
evaluation_nn_only = ensemble_nn_only.evaluate(test_dataset, return_dict=True)

# 打印准确率(仅使用NN #1和NN #2)
print("Accuracy (NN #1 and #2 only): ", evaluation_nn_only["accuracy"])

# 打印损失值(仅使用NN #1和NN #2)
print("Loss (NN #1 and #2 only): ", evaluation_nn_only["loss"])
  1/100 [..............................] - ETA: 0s - loss: 0.3536 - accuracy: 0.8400
 30/100 [========>.....................] - ETA: 0s - loss: 0.4103 - accuracy: 0.7967
 59/100 [================>.............] - ETA: 0s - loss: 0.4093 - accuracy: 0.7920
 88/100 [=========================>....] - ETA: 0s - loss: 0.4119 - accuracy: 0.7917
100/100 [==============================] - 0s 2ms/step - loss: 0.4148 - accuracy: 0.7913
Accuracy (NN #1 and #2 only):  0.7912999987602234
Loss (NN #1 and #2 only):  0.4147580564022064

让我们依次训练两个决策森林组件。

# 对训练数据集进行预处理
# 使用map函数对train_dataset中的每个样本进行预处理,preprocessor函数用于对样本进行处理
# 返回的结果是一个新的数据集train_dataset_with_preprocessing,其中每个样本都经过了预处理
train_dataset_with_preprocessing = train_dataset.map(lambda x,y: (preprocessor(x), y))

# 对测试数据集进行预处理
# 使用map函数对test_dataset中的每个样本进行预处理,preprocessor函数用于对样本进行处理
# 返回的结果是一个新的数据集test_dataset_with_preprocessing,其中每个样本都经过了预处理
test_dataset_with_preprocessing = test_dataset.map(lambda x,y: (preprocessor(x), y))

# 使用model_3对预处理后的训练数据集进行训练
model_3.fit(train_dataset_with_preprocessing)

# 使用model_4对预处理后的训练数据集进行训练
model_4.fit(train_dataset_with_preprocessing)
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7fad5d4b6700> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7fad5d4b6700>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7fad5d4b6700> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7fad5d4b6700>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING: AutoGraph could not transform <function <lambda> at 0x7fad5d4b6700> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7fad5d4b6700>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7facb40f80d0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7facb40f80d0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7facb40f80d0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7facb40f80d0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING: AutoGraph could not transform <function <lambda> at 0x7facb40f80d0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7facb40f80d0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
Reading training dataset...
Training dataset read in 0:00:03.527053. Found 2500 examples.
Training model...


[INFO 23-07-10 11:10:25.0183 UTC kernel.cc:1243] Loading model from path /tmpfs/tmp/tmpeqn1u3t4/model/ with prefix 03256340d0ca40b0


Model trained in 0:00:01.894803
Compiling model...


[INFO 23-07-10 11:10:25.9915 UTC decision_forest.cc:660] Model loaded with 1000 root(s), 314626 node(s), and 10 input feature(s).
[INFO 23-07-10 11:10:25.9915 UTC abstract_model.cc:1311] Engine "RandomForestOptPred" built
[INFO 23-07-10 11:10:25.9916 UTC kernel.cc:1075] Use fast generic engine


WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7fac685de700> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7fac685de700> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING: AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7fac685de700> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
Model compiled.
Reading training dataset...
Training dataset read in 0:00:00.210194. Found 2500 examples.
Training model...


[INFO 23-07-10 11:10:28.3455 UTC kernel.cc:1243] Loading model from path /tmpfs/tmp/tmpzrq7x74t/model/ with prefix a093792264d04fac


Model trained in 0:00:01.800354
Compiling model...


[INFO 23-07-10 11:10:29.2816 UTC decision_forest.cc:660] Model loaded with 1000 root(s), 316314 node(s), and 10 input feature(s).
[INFO 23-07-10 11:10:29.2816 UTC kernel.cc:1075] Use fast generic engine


Model compiled.
CPU times: user 20.1 s, sys: 1.49 s, total: 21.6 s
Wall time: 8.92 s





<keras.src.callbacks.History at 0x7fac5073e430>

评估决策森林

让我们逐个评估决策森林。

# 给模型添加评估指标
model_3.compile(["accuracy"])
model_4.compile(["accuracy"])

# 使用预处理后的测试数据对模型3进行评估,并返回评估结果的字典形式
evaluation_df3_only = model_3.evaluate(test_dataset_with_preprocessing, return_dict=True)

# 使用预处理后的测试数据对模型4进行评估,并返回评估结果的字典形式
evaluation_df4_only = model_4.evaluate(test_dataset_with_preprocessing, return_dict=True)

# 打印模型3的准确率评估结果
print("Accuracy (DF #3 only): ", evaluation_df3_only["accuracy"])

# 打印模型4的准确率评估结果
print("Accuracy (DF #4 only): ", evaluation_df4_only["accuracy"])
  1/100 [..............................] - ETA: 29s - loss: 0.0000e+00 - accuracy: 0.8600
  6/100 [>.............................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8200 
 12/100 [==>...........................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8300
 17/100 [====>.........................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8218
 22/100 [=====>........................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8173
 28/100 [=======>......................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8129
 34/100 [=========>....................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8124
 40/100 [===========>..................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8138
 46/100 [============>.................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8161
 52/100 [==============>...............] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8173
 58/100 [================>.............] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8178
 64/100 [==================>...........] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8156
 69/100 [===================>..........] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8165
 75/100 [=====================>........] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8175
 80/100 [=======================>......] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8166
 86/100 [========================>.....] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8166
 92/100 [==========================>...] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8153
 98/100 [============================>.] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8152
100/100 [==============================] - 1s 10ms/step - loss: 0.0000e+00 - accuracy: 0.8150

  1/100 [..............................] - ETA: 12s - loss: 0.0000e+00 - accuracy: 0.8500
  6/100 [>.............................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8250 
 12/100 [==>...........................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8325
 18/100 [====>.........................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8228
 24/100 [======>.......................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8158
 30/100 [========>.....................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8127
 36/100 [=========>....................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8122
 42/100 [===========>..................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8148
 48/100 [=============>................] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8144
 54/100 [===============>..............] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8176
 60/100 [=================>............] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8153
 66/100 [==================>...........] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8150
 71/100 [====================>.........] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8169
 76/100 [=====================>........] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8176
 81/100 [=======================>......] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8167
 86/100 [========================>.....] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8162
 91/100 [==========================>...] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8149
 96/100 [===========================>..] - ETA: 0s - loss: 0.0000e+00 - accuracy: 0.8147
100/100 [==============================] - 1s 10ms/step - loss: 0.0000e+00 - accuracy: 0.8149
Accuracy (DF #3 only):  0.8149999976158142
Accuracy (DF #4 only):  0.8148999810218811

让我们评估整个模型组合:

# 编译模型
ensemble_nn_and_df.compile(
    loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"])

# 评估模型
evaluation_nn_and_df = ensemble_nn_and_df.evaluate(
    test_dataset, return_dict=True)

# 打印准确率和损失值
print("Accuracy (2xNN and 2xDF): ", evaluation_nn_and_df["accuracy"])
print("Loss (2xNN and 2xDF): ", evaluation_nn_and_df["loss"])
  1/100 [..............................] - ETA: 23s - loss: 0.3324 - accuracy: 0.8600
  6/100 [>.............................] - ETA: 0s - loss: 0.3850 - accuracy: 0.8267 
 12/100 [==>...........................] - ETA: 0s - loss: 0.3650 - accuracy: 0.8317
 18/100 [====>.........................] - ETA: 0s - loss: 0.3679 - accuracy: 0.8261
 24/100 [======>.......................] - ETA: 0s - loss: 0.3723 - accuracy: 0.8229
 30/100 [========>.....................] - ETA: 0s - loss: 0.3752 - accuracy: 0.8200
 35/100 [=========>....................] - ETA: 0s - loss: 0.3742 - accuracy: 0.8200
 40/100 [===========>..................] - ETA: 0s - loss: 0.3736 - accuracy: 0.8198
 46/100 [============>.................] - ETA: 0s - loss: 0.3723 - accuracy: 0.8207
 52/100 [==============>...............] - ETA: 0s - loss: 0.3716 - accuracy: 0.8213
 58/100 [================>.............] - ETA: 0s - loss: 0.3722 - accuracy: 0.8193
 64/100 [==================>...........] - ETA: 0s - loss: 0.3754 - accuracy: 0.8178
 70/100 [====================>.........] - ETA: 0s - loss: 0.3745 - accuracy: 0.8184
 76/100 [=====================>........] - ETA: 0s - loss: 0.3753 - accuracy: 0.8170
 82/100 [=======================>......] - ETA: 0s - loss: 0.3757 - accuracy: 0.8151
 88/100 [=========================>....] - ETA: 0s - loss: 0.3760 - accuracy: 0.8147
 94/100 [===========================>..] - ETA: 0s - loss: 0.3785 - accuracy: 0.8130
100/100 [==============================] - ETA: 0s - loss: 0.3795 - accuracy: 0.8133
100/100 [==============================] - 1s 10ms/step - loss: 0.3795 - accuracy: 0.8133
Accuracy (2xNN and 2xDF):  0.8133000135421753
Loss (2xNN and 2xDF):  0.37953513860702515

为了完成任务,让我们对神经网络层进行更多微调。请注意,我们不对预训练的嵌入进行微调,因为DF模型依赖于它(除非我们在之后也重新训练它们)。

总结一下,你有:

# 输出NN #1和#2的准确率
print(f"Accuracy (NN #1 and #2 only):\t{evaluation_nn_only['accuracy']:.6f}")
# 输出DF #3的准确率
print(f"Accuracy (DF #3 only):\t\t{evaluation_df3_only['accuracy']:.6f}")
# 输出DF #4的准确率
print(f"Accuracy (DF #4 only):\t\t{evaluation_df4_only['accuracy']:.6f}")
# 输出分割线
print("----------------------------------------")
# 输出2xNN和2xDF的准确率
print(f"Accuracy (2xNN and 2xDF):\t{evaluation_nn_and_df['accuracy']:.6f}")

# 定义一个函数,计算准确率的增长百分比
def delta_percent(src_eval, key):
  # 获取源准确率
  src_acc = src_eval["accuracy"]
  # 获取最终准确率
  final_acc = evaluation_nn_and_df["accuracy"]
  # 计算准确率的增长
  increase = final_acc - src_acc
  # 输出增长百分比
  print(f"\t\t\t\t  {increase:+.6f} over {key}")

# 分别计算NN #1和#2、DF #3、DF #4的准确率增长百分比
delta_percent(evaluation_nn_only, "NN #1 and #2 only")
delta_percent(evaluation_df3_only, "DF #3 only")
delta_percent(evaluation_df4_only, "DF #4 only")
Accuracy (NN #1 and #2 only):	0.791300
Accuracy (DF #3 only):		0.815000
Accuracy (DF #4 only):		0.814900
----------------------------------------
Accuracy (2xNN and 2xDF):	0.813300
				  +0.022000 over NN #1 and #2 only
				  -0.001700 over DF #3 only
				  -0.001600 over DF #4 only

在这里,你可以看到组合模型的表现优于其各个部分。这就是为什么集成方法如此有效。

下一步是什么?

在这个例子中,你看到了如何将决策森林与神经网络结合起来。进一步训练神经网络和决策森林的一个额外步骤。

此外,为了清晰起见,决策森林只接收预处理的输入。然而,决策森林通常很擅长消耗原始数据。通过将原始特征也提供给决策森林模型,可以改善模型。

在这个例子中,最终模型是各个模型预测的平均值。如果所有模型的表现都差不多,这个解决方案效果很好。然而,如果其中一个子模型非常好,将其与其他模型聚合可能会实际上有害(或反之亦然;例如尝试减少1k个示例的数量,看看它如何严重影响神经网络;或在第二个随机森林模型中启用“SPARSE_OBLIQUE”分裂)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/275317.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux 网络工具(一)

linux 网络工具 1. nmcli命令1.1 介绍1.2 networking 网络控制1.3 connection 连接管理1.4 device 设备管理1.5 nmcli 返回状态码 2. ifcfg命令家族2.1 ifconfig2.2 route2.3 netstat 3. 静态路由CentosUbuntu - netplanUbuntu - network-manager 1. nmcli命令 1.1 介绍 RHEL…

使用机器学习进行语法错误检测/纠正

francescofranco_39234 一、说明 一般的学习&#xff0c;特别是深度学习&#xff0c;促进了自然语言处理。各种模型使人们能够执行机器翻译、文本摘要和情感分析——仅举几个用例。今天&#xff0c;我们将研究另一个流行的用途&#xff1a;我们将使用Gramformer构建一个用于机器…

安卓全球定位系统RTK测量仪 手持GPS北斗定位仪可用于国土电力

RTK&#xff0c;英文全名叫做Real-time kinematic&#xff0c;也就是实时动态。这是一个简称&#xff0c;全称是RTK&#xff08;Real-time kinematic&#xff0c;实时动态&#xff09;载波相位差分技术。 RTK定位是一种高精度的全球卫星导航技术&#xff0c;是实时运用技术&…

springcloud之通过openfeign优化服务调用方式

写在前面 源码 。 在前面的文章中我们实际上已经完成了优惠券模块微服务化的改造&#xff0c;但是其中还是有比较多可以优化和增强的地方&#xff0c;本文就先来对服务间的通信方式进行优化&#xff0c;具体就是使用openfeign来替换调原来的webclient。下面我们就开始吧&#…

低代码平台在金融银行中的应用场景

随着数字化转型的推进&#xff0c;商业银行越来越重视技术在业务发展中的作用。在这个背景下&#xff0c;白码低代码平台作为一种新型的开发方式&#xff0c;正逐渐受到广大商业银行的关注和应用。白码低代码平台能够快速构建各类应用程序&#xff0c;提高开发效率&#xff0c;…

网络攻防中应该掌握的进阶工具udp2raw,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS

网络攻防中应该掌握的进阶工具udp2raw,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS。 udp2raw tunnel,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS,或在UDP不稳定的环境下提升稳定性。可以有效防止在使用kcptun或者finalspeed的…

TiDB 7.5 LTS 发版丨提升规模化场景下关键应用的稳定性和成本的灵活性

互联网时代&#xff0c;数据的迅猛增长给数据库带来了可扩展性的挑战&#xff0c;Gen AI 带来的数据暴增更加剧了这种挑战。传统的数据分片已经不能承载新时代数据暴增的需求&#xff0c;更简单且具有前瞻性的方法则是采用原生分布式数据库来解决扩展性问题。在这种规模化场景的…

MYSQL一一外键约束

概念&#xff1a;外键用来让两张表的数据之间建立联系&#xff0c;从而保证数据的一致性和完整性 建立外键&#xff1a; ①这是在建立表的时候建立外键的方法 ②这是在建立完表之后建立外键的方法&#xff1a; 删除外键&#xff1a; 现在有一张员工表&#xff08;emp&#xf…

Linux基本指令(二)

目录 &#x1f4d5;前言 &#x1f4d5;echo 输出重定向&#xff08;>&#xff09; 追加重定向(>>) 输入重定向&#xff08;<&#xff09; &#x1f4d5;more &#x1f4d5;less &#x1f4d5;head &#x1f4d5;tail 查看大文本的中间部分 &#x1f4d5…

Java 8 中的 Stream 轻松遍历树形结构!

可能平常会遇到一些需求&#xff0c;比如构建菜单&#xff0c;构建树形结构&#xff0c;数据库一般就使用父id来表示&#xff0c;为了降低数据库的查询压力&#xff0c;我们可以使用Java8中的Stream流一次性把数据查出来&#xff0c;然后通过流式处理&#xff0c;我们一起来看看…

深入ArkUI:深入实战组件text和text input

文章目录 Text组件介绍Text组件的属性方法Text:文本显示组件4.3TextInput组件实战案例:图片宽度控制页面本文总结要点回顾在今天的课程中,我们将深入学习ArkUI提供的基础组件,着重探讨text和text input两个组件。 Text组件介绍 Text组件是一个用于显示文本的组件,其主要作…

自动化运维平台Spug本地部署结合内网穿透实现远程访问

文章目录 前言1. Docker安装Spug2 . 本地访问测试3. Linux 安装cpolar4. 配置Spug公网访问地址5. 公网远程访问Spug管理界面6. 固定Spug公网地址 前言 Spug 面向中小型企业设计的轻量级无 Agent 的自动化运维平台&#xff0c;整合了主机管理、主机批量执行、主机在线终端、文件…

【HTML】使用canvas添加水印

效果 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>添加水印</title><style>…

WebRTC原理与web端实战开发

什么是WebRTC webRtc(web real-time Communication) &#xff0c;旨在建立一个浏览器间实时通信的平台 谷歌开源跨平台&#xff08;android&#xff0c;IOS&#xff0c;windows&#xff0c;Linux&#xff09;实时传输&#xff08;提供强大的音视频引擎&#xff09; RTC涉及的…

SpringCloud(H版alibaba)框架开发教程---附源码 一

源码地址&#xff1a;https://gitee.com/jackXUYY/springboot-example 创建订单服务&#xff0c;支付服务&#xff0c;公共api服务&#xff08;共用的实体&#xff09;&#xff0c;eureka服务 1.cloud-consumer-order80 2.cloud-provider-payment8001 3.cloud-api-commons 4.…

Vue框架引入Axios

首先已经创建好了 Vue 框架&#xff0c;安装好了 node.js。 没有完成的可按照此博客搭建&#xff1a;搭建Vue项目 之后打开终端&#xff0c;使用命令。 1、命令安装 axios 和 vue-axios npm install axios --save npm install vue-axios --save2、package.json 查看版本 在 p…

Flink1.17实战教程(第五篇:状态管理)

系列文章目录 Flink1.17实战教程&#xff08;第一篇&#xff1a;概念、部署、架构&#xff09; Flink1.17实战教程&#xff08;第二篇&#xff1a;DataStream API&#xff09; Flink1.17实战教程&#xff08;第三篇&#xff1a;时间和窗口&#xff09; Flink1.17实战教程&…

新建虚拟环境并与Jupyter内核连接

第一步:在cmd里新建虚拟环境,shap38是新建的虚拟环境的名字 ,python=3.x conda create -n shap38 python=3.8第二步,安装ipykernel,打开anconda powershell prompt: 虚拟环境的文件夹位置,我的如图所示: 进入文件夹并复制地址: 输入复制的文件夹地址更改文件夹:…

跨境电商获客脚本必备功能有哪些?

随着全球化的加速和电子商务的兴起&#xff0c;跨境电商已经成为了企业拓展市场、提高收益的重要途径。 而在跨境电商运营中&#xff0c;获客脚本的作用不可忽视&#xff0c;本文将为您揭示跨境电商获客脚本必备的五大功能&#xff0c;帮助您在激烈的市场竞争中抢占先机。 一…

基于零和收益的DEA模型研究python实现

传统的DEA模型往往假设相关的是相互独立的,此时DEA模型只能计算出相对效率,无法进行效率的调整。如在碳排放分配问题上,碳排放总量保持不变,利用DEA模型只能计算出每个省份分配的相对效率,这在讨论固定资源下的碳排放配额分配问题时具有明显的局限性。在这种情况下,利用Z…