【我的方向】轻量化小目标检测

文章目录

    • 轻量化
      • 1人工设计的轻量化方法
        • 1.1组卷积
        • 1.2深度可分离卷积
        • 1.3基于深度可分离卷积的MobileNet
        • 1.4 ShuffleNet
        • 1.5 ShuffleNet V2
      • 基于 Octave 卷积的改进基线网络
      • 基于 Ghost特征的 GhostNet
      • 基于神经网络结构搜索的轻量化方法
      • 基于自动模型压缩的轻量化方法
      • 4 相关论文
    • 小目标检测
    • 相关论文
    • 轻量化与小目标结合的看法

轻量化

为什么要研究轻量级神经网络?
随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。目前,针对轻量化深度学习网络的研究主要集中于人工设计的轻量化网络和基于神经网络结构搜索的自动轻量化网络。

发展现状:
如何在尽可能保持神经网络模型精度的前提下,最大程度地降低模型延迟和存储空间是目前研究的热点问题。现有性能较好的人工设计的轻量化方法不仅耗费大量的人力资源,而且得具备丰富的深度学习经验才能使得各项性能指标都达到要求。(接下来讲的论文就是用现有的轻量级模型[efficientNet]作为主干网络+特征融合技术可以对目标检测达到很好的效果,而参数量、计算量都很小)。基于神经网络结构搜索的轻量化方法仅专注于提高神经网络模型的准确率,却忽视了底层硬件设备的限制,这样得到的高效模型由于对硬件要求较高。

主要从以下三个方面学习:

  • 1、压缩已经训练好的模型:知识蒸馏、权重量化、剪枝、注意力迁移
  • 2、直接训练好的轻量级网络:MobileNet(1,2,3)、shuffleNet(1、2)、squeezeNet、 EfficientNet、Xception、NasNet
  • 3、加速卷积运算:im2col、低秩分解、CUDA加速

1人工设计的轻量化方法

1.1组卷积

组卷积对输入特征图按通道进行分组卷积,再将分组卷积得到的结果按通道进行连接得到最终的输出特征,具有轻量化效果。(2012年AlexNet由于受到硬件设备的限制,创新性地使用组卷积并将一个网络在两个硬件设备上进行训练)。但是,组卷积也有局限性,会导致特征图之间的信息不流畅,输出的特征图没有包含所有输入特征图的信息,后续的shuffleNet提出的通道重排可以解决这个问题。
在这里插入图片描述

1.2深度可分离卷积

Depthwise卷积使用卷积核对输入特征按通道进行分别卷积,即第一通道的
卷积核与第一通道的输入特征进行卷积。Depthwise卷积在获得特征的空间信息后,将得到的输出特征进行Pointwise卷积,即利用1×1的卷积核对Depthwise卷积的输出进行卷积,以获取特征中不同通道之间的信息,通过该组合方式达到轻量化效果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3基于深度可分离卷积的MobileNet

MobileNetv1的基本思想是使用深度可分离卷积代替常规卷积,利用深度卷积代替传统卷积中的滤波器进行特征提取。
在这里插入图片描述

MobileNetv2作为MobileNet的改进网络,引入ResNet网络的残差思想,同时解决了常规ResNet中大量使用ReLU激活函数导致神经元失活的缺陷。若不想让ReLU因“抹0”丢失信息,让输入的值都为正值。但是若是输入的值都为正值,又变成了恒等 映射的线性变换。神经网络能拟合源于非线激活,所以扩展多余的维度,“抹0”去除冗余信息,再用ReLU非线性激活。

在这里插入图片描述
在这里插入图片描述

瓶颈结构的shortcut:
若是输入的通道与输出的通道数一样或者步长设置为1就走带残差的block.
在这里插入图片描述

下面是对CIFAR10的数据集测试普通卷积、MobileNetv1、MobileNetv2的参数、计算量对比:

在这里插入图片描述

MobileNetV3是通过神经结构搜索的架构,也就是通过炼丹练出来的模型。网络结构是基于NAS实现的MnasNet,同时也使用了深度可分离卷积和线性瓶颈的倒残差结构,激活函数使用的是h-wish。

1.4 ShuffleNet

ShuffleNet是一个效率极高且可运行在手机等移动设备上的网络。常规组卷积最大的局限性为在训练过程中不同分组之间没有信息交换,这样会大幅降低深度神经网络的特征提取能力。因此,在MobileNet中使用大量的 1× 1 Pointwise(通道之间相关联)卷积来弥补这一缺陷,而 ShuffleNet 采用通道变换来解决该问题。通道变换的核心思想是对组卷积之后得到的特征图在通道上进行随机均匀打乱,再进行组卷积操 作,这样就保证了执行下一个组卷积操作的输入特 征来自上一个组卷积中的不同组。(之前讲的yolov7也用到这个思想)
在这里插入图片描述

分组原理:假设输入一维12个数据,分为3组,每个组4个值,分组重排先将这个矩阵升维,重构3行4列,然后对矩阵转置,得到4行3列,再安装行展开。
在这里插入图片描述
在这里插入图片描述

1.5 ShuffleNet V2

在 ShuffleNetV2被提出之前,轻量化网络中衡量模型复杂度的通用指标为每秒浮点运算次数(FLOPS)。FLOPS代表运算力,对于网络性能评估是一个间接指标,因为运算力不完全等同于运行速度。通过实验可以发现,相同 FLOPS 的两个模型的运行速度却存在差异,导致该差异的原因包括 GPU、内存使用量 (MAC)

  • 1)尽量使用和输入特征通道数相同的卷积核个数来最小化内存使用量。以上文提及的深度可分离卷积中的 Pointwise 卷积为例,假设输入特征尺寸为 h×w×cin,输出通道数为 cout,于是在 Pointwise 卷积中 可得到:
    在这里插入图片描述

    仅当 c1 = c2 时,MAC取最小值,这个理论分析也通过实验得到证实.

  • 2)重视元素级操作。激活函数(例如 ReLU)和 特征图的相加(add)虽然对于浮点运算力的影响很小,但它们对于内存使用量会产生较大的影响。

  • 3)过量使用组卷积也会增加MAC,注意分组数。

在ShuffleNetv1的模块中,大量使用了1x1组卷积,这样的话会增加MAC,另外v1采用了类似ResNet中的瓶颈层,输入和输出通道数不同(这里是MobileNetv2提出的),这违背了输入输出通道数一致原则。ShuffleNet V2 结构如下图所示,通道分离本质 上是将输入特征按通道分成两部分,一部分通道数 为 c’,另一部分为 c - c’。左分支等同于恒等映射,对应残差网络中的 Shortcut,右分支包含了 3 个连续的卷积操作,且满足输入特征和输出特征通道相同的原则。
在这里插入图片描述

基于 Octave 卷积的改进基线网络

图片中不同的信息都以不同的频率传递,主要分为高频信息和低频信息,其中:高频通常用于细节编码,高频信息代表图片中的细节特征;低频通常用于全局编码,低频信息代表图片中的全局特征,即较低空间分辨率下变化较慢的特征。
卷积层之间的特征图可以看作是高频信息和低频信息的混合特征图。在传统卷积方式中,无论高频信息还是低频信息都是用同一种方式存储的,这对于其中的低频信息而言就会造成存储冗余并增加计算成本。Octave 卷积是针对这一问题提出的新型卷积方式,将特征图根据不同的频率进行因式分解,对不同频率的信息进行不同的存储和操作,再在不同频率的信息之间进行信息交换。
在 Octave 卷积的输入特征图中,当αin =0 ,αout = 0 时,Octave 卷积就等同于常规卷积。当 αin = 0 且 αout ≠ 0 时,代表当输入特征图为常规卷积特征图时 ,将其转化用于普通卷积的 Octave 特征图,通常应用于 Octave 卷积的第一层。当 αin ≠ 0 且 αout ≠ 0 时,代表当输入是 Octave 特征图时进行 Octave 卷积操作,通常应用于 Octave 卷积的中间层。当 αin ≠ 0 且 αout = 0 时,代表在获得传统特征图时需进行 Octave 卷积,其作用是将 Octave 特征图经过卷积之后得到传统特征图,通常 应用于 Octave 卷积的最后一层。
在这里插入图片描述

Octave 卷积通常对低频信息和高频信息进行分别存储和处理,如果不能实现不同频率信息之间的信息交换,则非常影响网络性能。在获得高频信息时,对输入特征图中的高频信息进行常规卷积操作,同时对低频信息进行上采样, 将两者结合得到卷积之后的高频信息。在获得低频信息时,对输入特征图中的低频信息进行常规卷积操作,同时对高频信息进行池化,将两者结合得到卷,积之后的低频信息。
在这里插入图片描述

基于 Ghost特征的 GhostNet

传统深度神经网络的轻量化方法研究主要集中于减少参数量及改进卷积方式。2020年,HAN对深度神经网络特征图进行分析,发现常规卷积中特征图的冗余性在神经网络结构中很少被关注,为了从特征图冗余的角度实现网络结构轻 量化 ,GhostNet 应运而生。如下图所示,红色、绿色和黄色的每一对都是相似的特征图,如果可以将这些相似特征图通过廉价的操作变换实现 ,那么可能实现低的运算量。
在这里插入图片描述

这里作者是先使用1 x 1卷积进行通道压缩,然后深度可分离卷积生成相似特征图与前面的特征层堆叠。这里与mobileNet类似,把传统卷积换成Ghost卷积块。
在这里插入图片描述

基于神经网络结构搜索的轻量化方法

随着强化学习的快速发展,基于神经网络结构搜索的轻量化方法应运而生。
神经网络结构搜索的主要目的是利用强化学习方法,在搜索空间中搜索到最适合的基本单元中的超参数,再将搜索到的基本单元进行堆叠得到神经网络结构搜索的轻量化网络。
在这里插入图片描述

基于自动模型压缩的轻量化方法

模型压缩主要分为细粒度修 剪和粗粒度修剪两部分,细粒度修剪针对权重中的冗 余部分进行修改,粗粒度修剪则是针对通道、行列、块等整个区域按照一定的稀疏率进行压缩。

  • 1)剪枝
    剪枝的本质剪去神经网络中不必要的冗余权值和分支,仅保留对于神经网络的目标任务有效用的权值参数。
  • 2)权值共享
    权值共享是使用同一组参数来避免过多参数导致的训练和模型冗余。
  • 3)权值量化
    权值量化旨在用较小的比特值来表示权值,大概就是把float32换成float8,以达到减少存储量的目的。
  • 4)哈夫曼编码
    哈夫曼编码是将两个权值最低的节点作为左右子树形成新的节点,再选取两个权值最低的节点作为左右子树形成新的节点,以此类推,达到根据使用频率来最大化节省存储空间的目的。

4 相关论文

《Mobile-Former: Bridging MobileNet and Transformer(连接 MobileNet 和Transformer)》 CVPR-2022:《移动成型器:桥接MobileNet和Transformer》

Mobile-Former是一种 MobileNet 和 Transformer 的并行设计,中间有一个双向桥,这种结构利用了 MobileNet 在本地处理和全局交互中的 Transformer 的优势,同时可以实现局部和全局特征的双向融合。结合提出的轻量级交叉注意力对桥梁进行建模,Mobile-Former 不仅计算效率高,而且具有更强的表示能力。它在低 FLOP 状态下性能优于 MobileNetV3。

小目标检测

小目标检测(Small Object
Detection)是指在图像中检测尺寸较小的目标物体,通常是指物体的尺寸小于图像大小的1/10或者更小,COCO为例,面积小于等于1024像素的目标。

学习的方向:

  • 1)基于特征金字塔的方法:这种方法通过构建特征金字塔来捕获不同尺度的特征信息,然后将不同尺度的特征信息进行融合以提高目标检测的准确率。常见的基于特征金字塔的方法包括FPN(Feature Pyramid Network)、SSD(Single Shot Detector)等。
  • 2)基于注意力机制的方法:这种方法通过引入注意力机制来提高小目标的检测性能,例如SENet(Squeeze-and-Excitation Network)、CBAM、SKNet等。
  • 3)基于联合训练的方法:这种方法通过联合训练来提高小目标的检测性能,例如CornerNet、CenterNet等。
  • 4)基于弱监督学习的方法:这种方法通过利用弱监督学习技术来减少标注数据的需求,例如WOD(Weakly Supervised Object Detection)等。
  • 5)基于增强数据的方法:这种方法通过增加数据的多样性和难度来提高小目标的检测性能,例如使用数据增强技术 (随机裁剪、颜色抖动)、增加负样本等。

相关论文

“RepPoints V2: Verification Meets Regression for Object Detection”
(CVPR 2021) 《RepPoints V2:验证符合对象检测的回归》

该论文提出了一种基于验证和回归相结合的物体检测方法,该方法能够更好地检测小物体。该算法通过引入重复点表示对象,同时结合验证和回归来提高检测准确性。传统的物体检测方法通常使用预定义的锚点框来检测和定位物体。然而,由于不同目标的形状和尺寸差异很大,使用单一的锚点框往往难以准确检测和定位目标。为了解决这个问题,本文提出了一种新的物体检测方法,名为 RepPoints V2。RepPoints V2 使用了两个关键组件来提高检测精度:验证模块和回归模块。验证模块可以对候选目标进行验证,从而减少误检率。回归模块可以对候选目标进行精确定位,从而提高检测精度。与传统的锚点框方法相比,RepPoints V2 能够更好地适应不同尺寸和形状的目标,从而提高检测的准确性。

“Beyond NMS: Fast and Accurate Object Detection with Hard Positive
Generation” (CVPR 2021) 《超越NMS:使用硬阳性生成实现快速准确的对象检测》

该论文提出了一种新的目标检测框架,能够更快、更准确地检测小目标。该方法通过引入硬正样本生成技术来减少虚假正样本的数量,从而提高检测精度和速度。在传统的目标检测方法中,通常使用非极大值抑制(NMS)来去除冗余的检测结果,从而提高检测精度和效率。然而,NMS 方法有时会过度去除正样本,从而导致检测精度下降。为了解决这个问题,本文提出了一种新的目标检测方法,名为 Hard Positive Generation。Hard Positive Generation 方法通过在候选框中生成正样本,从而提高正样本的覆盖率。在生成正样本时,Hard Positive Generation 方法使用了类似于分类器的技术,即将正样本与负样本进行分类,从而减少误检率。与传统的 NMS 方法相比,Hard Positive Generation 方法能够更准确地检测目标,从而提高检测精度。

轻量化与小目标结合的看法

在小目标检测中,由于目标的尺寸相对较小,因此需要模型具有高效性和准确性。同时,因为资源受限,轻量级模型可以更好地适应于嵌入式设备、移动设备等资源有限的环境中。目前,一些针对小目标检测的轻量级模型已经被提出。这些模型通常采用一些有效的优化策略,例如深度可分离卷积、通道注意力等技术,以实现高效的检测性能。此外,一些基于知识蒸馏的方法也被应用于轻量级模型中,以提高其性能。

  • 1、YOLOv7-tiny:yolov7的轻量化模式。
  • 2、EfficientDet:一种基于EfficientNet网络结构的目标检测算法,采用了BiFPN和Swish等轻量化模块,同时优化了网络架构和训练方法,从而实现了高效的小目标检测。
  • 3、CenterNet:一种基于中心点的目标检测算法,采用了轻量化的Hourglass网络结构和Dilated Convolution模块来提高检测精度和计算效率。
  • 4、BlazeFace:一种基于MobileNetV2网络结构的人脸检测算法,采用了轻量化的网络设计和特征融合方法来实现实时的人脸检测。
  • 5、“HR-RCNN: High-Resolution and Lightweight Networks for Object Detection” (CVPR 2021): 该论文提出了一种高分辨率轻量级目标检测框架 HR-RCNN,该框架使用深度可分离卷积、跨层连接和特征金字塔等技术来提高检测性能和计算效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/271767.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【我与java的成长记】之面向对象的初步认识

系列文章目录 能看懂文字就能明白系列 C语言笔记传送门 🌟 个人主页:古德猫宁- 🌈 信念如阳光,照亮前行的每一步 文章目录 系列文章目录🌈 *信念如阳光,照亮前行的每一步* 前言一、什么是面向对象面向过程…

C++力扣题目239--滑动窗口最大值

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1: 输入:nums [1,3,-1,-3,5,3,6,7], k 3 输…

基于ssm实验室预约管理系统论文

目 录 目 录 I 摘 要 III ABSTRACT IV 1 绪论 1 1.1 课题背景 1 1.2 研究现状 1 1.3 研究内容 2 2 系统开发环境 3 2.1 vue技术 3 2.2 JAVA技术 3 2.3 MYSQL数据库 3 2.4 B/S结构 4 2.5 SSM框架技术 4 3 系统分析 5 3.1 可行性分析 5 3.1.1 技术可行性 5 3.1.2 操作可行性 5 3…

方舟开发框架(ArkUI)概述

目录 1、基本概念 2、两种开发范式 3、开发框架的特性 4、UI开发(ArkTS声明式开发范式)概述 4.1、特点 4.2、整体架构 4.3、开发流程 方舟开发框架(简称ArkUI)为HarmonyOS应用的UI开发提供了完整的基础设施,包…

深入解析 Flink CDC 增量快照读取机制

一、Flink-CDC 1.x 痛点 Flink CDC 1.x 使用 Debezium 引擎集成来实现数据采集,支持全量加增量模式,确保数据的一致性。然而,这种集成存在一些痛点需要注意: 一致性通过加锁保证:在保证数据一致性时,Debez…

LH7904C高压线太阳能警示灯

适用场所: 适用于高压线,塔吊,路政,船舶,种植,塔机,航海航道等场所起警示作用。 产品特点: 光控无开关,白天不闪,昏暗环境自动闪烁,无需手动操作,省时省事; 采用红色LED作光源,亮度高&#…

边缘计算云边端全览—边缘计算系统设计与实践【文末送书-10】

文章目录 一.边缘计算1.1边缘计算的典型应用 二.边缘计算 VS 云计算三.边缘计算系统设计与实践【文末送书-10】3.1 粉丝福利:文末推荐与福利免费包邮送书! 一.边缘计算 边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心…

camunda-modeler画图入门

软件下载 camunda-modeler是camunda的工作流绘制桌面工具 5.9.0和5.18.0版本下载地址 https://storage.googleapis.com/downloads-camunda-cloud-release/camunda-modeler/5.9.0/camunda-modeler-5.9.0-win-x64.ziphttps://storage.googleapis.com/downloads-camunda-cloud-…

苹果证书p12和描述文件的创建方法

​ 苹果证书p12和描述文件的创建方法 在2020年之前,我们在使用appuploder创建苹果证书的时候,只需要注册苹果开发者账号,但不需要缴费成为开发者。 在2020年之后,需要先缴费成为苹果开发者。 假如你还没有注册苹果开发者账号&…

右值引用和移动语义以及C++11新增的类功能

正文开始前给大家推荐个网站,前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 右值引用和左值引用 传统的C语法中就有引用的语法,而C11中新增了的右值引用语法特…

FC忍者神龟格斗可视化hack源码

[FC][忍者神龟格斗][最佳可视化][Final] 时间:2023.12.22 作者:FlameCyclone 内容: 1.可视化功能菜单 (1)菜单按键操作 1.上下键: 移动选项 2.左右键: 翻页 3.选择键: 翻转功能开关 4.开始键: 退出菜单 5.B键: 启用功能 …

如何进行实例管理

目录 修改实例规格 修改网络带宽 网站的访问量每天都比较高,网站明显变慢了,这是怎么回事? 这说明你的网站的并发访问能力已经不足了,并发访问是指同一时间,多个用户请求访问同一个域名下的资源或服务,请…

RHCE9学习指南 第10章 ACL权限

10.1 ACL介绍及基本用法 前面讲权限时是对u、u、o来设置权限的。假如有如图10-1所示的需求。 图10-1 为三个用户设置权限 有一个目录aa,要求tom、bob、mary具有不同的权限,利用前面讲过的知识是完全可以实现的。 所有者设置为tom,把所有者权…

目标追踪:使用ByteTrack进行目标检测和跟踪

BYTE算法是一种简单而有效的关联方法,通过关联几乎每个检测框而不仅仅是高分的检测框来跟踪对象。这篇博客的目标是介绍ByteTrack以及多目标跟踪(MOT)的技术。我们还将介绍在样本视频上使用ByteTrack跟踪运行YOLOv8目标检测。 多目标跟踪&…

【Python微信机器人】第六七篇: 封装32位和64位Python hook框架实战打印微信日志

目录修整 目前的系列目录(后面会根据实际情况变动): 在windows11上编译python将python注入到其他进程并运行注入Python并使用ctypes主动调用进程内的函数和读取内存结构体调用汇编引擎实战发送文本和图片消息(支持32位和64位微信)允许Python加载运行py脚本且支持热加载利用汇…

什么是数据可视化?数据可视化的流程与步骤

前言 数据可视化将大大小小的数据集转化为更容易被人脑理解和处理的视觉效果。可视化在我们的日常生活中非常普遍,但它们通常以众所周知的图表和图形的形式出现。正确的数据可视化以有意义和直观的方式为复杂的数据集提供关键的见解。 数据可视化定义 数据可视化…

「仙逆」王林夺舍身份曝光,火焚国火兽危机,两位始祖保护王林

Hello,小伙伴们,我是拾荒君。 《仙逆》第16集超前爆料,本次猛料,王林的天逆珠吞噬了火兽之王,使他的火属性达到了大圆满的境界。在封印屏障的保护下,他成功地逃脱了火兽的追击。然而,如今火兽数量众多&…

【视觉实践】使用Mediapipe进行手势识别

目录 1 Mediapipe 2 Solutions 3 安装依赖库 4 实践 1 Mediapipe Mediapipe是google的一个开源项目,可以提供开源的、跨平台的常用机器学习(machine learning,ML)方案。MediaPipe是一个用于构建机器学习管道的框架,用于处理视频、音频等时间序列数据。与资源消耗型的机…

易天新引进DELL Z9432F-ON交换机设备,网络通信再迎新风采

随着信息技术的飞速发展,网络通信已经成为现代社会中不可或缺的一部分。在这个数字化时代,企业对于高效、可靠的网络设备需求日益增加。为了满足企业日益增长的网络需求和为客户提供更好的服务,易天引进了DELL Z9432F-ON交换机设备&#xff0…

系统管理在工业物联网中的应用——青创智通工业物联网

工业物联网系统是一个复杂的大规模系统,涉及到众多的设备和系统,因此其管理面临诸多挑战。首先,设备和系统的多样性使得互通性成为一个难题,不同厂商的设备和系统之间的兼容性难以保证。其次,工业物联网系统的数据量庞…