【单调队列】LeetCode1499:满足不等式的最大值

涉及知识点

单调队列

题目

给你一个数组 points 和一个整数 k 。数组中每个元素都表示二维平面上的点的坐标,并按照横坐标 x 的值从小到大排序。也就是说 points[i] = [xi, yi] ,并且在 1 <= i < j <= points.length 的前提下, xi < xj 总成立。
请你找出 yi + yj + |xi - xj| 的 最大值,其中 |xi - xj| <= k 且 1 <= i < j <= points.length。
题目测试数据保证至少存在一对能够满足 |xi - xj| <= k 的点。
示例 1:
输入:points = [[1,3],[2,0],[5,10],[6,-10]], k = 1
输出:4
解释:前两个点满足 |xi - xj| <= 1 ,代入方程计算,则得到值 3 + 0 + |1 - 2| = 4 。第三个和第四个点也满足条件,得到值 10 + -10 + |5 - 6| = 1 。
没有其他满足条件的点,所以返回 4 和 1 中最大的那个。
示例 2:
输入:points = [[0,0],[3,0],[9,2]], k = 3
输出:3
解释:只有前两个点满足 |xi - xj| <= 3 ,代入方程后得到值 0 + 0 + |0 - 3| = 3 。
提示:
2 <= points.length <= 105
points[i].length == 2
-108 <= points[i][0], points[i][1] <= 108
0 <= k <= 2 * 108
对于所有的1 <= i < j <= points.length ,points[i][0] < points[j][0] 都成立。也就是说,xi 是严格递增的。

单调队列

枚举j,计算i。我们只考虑i<j的情况。(i,j)和(j,i)本质是一样的。
由于x是升序,所以xi <= xj,也就是:yi+yj+|xi-xj| 等于yi+yj+xj-xi ,xj+yj合并 yi-xi合并,简称subi。
将xi和yi-xi放到双向队列中。
淘汰以下数据:
一,xj-xi >k,从队首淘汰。
二,i1 <i2,且subi1< subi2。如果j能选择i1,则必定能选择i2。subi大则yi+yj+xj-xi大。从队尾淘汰i1。

代码

核心代码

class Solution {
public:
	int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
		m_c = points.size();
		deque<pair<int, int>> mXSub;
		int iRet = INT_MIN;
		for (int i = 0; i < m_c; i++)
		{
			while (mXSub.size() && (points[i][0] - mXSub.front().first > k))
			{
				mXSub.pop_front();
			}
			if (mXSub.size())
			{
				iRet = max(iRet, mXSub.front().second + points[i][0] + points[i][1]);
			}
			while (mXSub.size() && (mXSub.back().second <= points[i][1] - points[i][0]))
			{
				mXSub.pop_back();
			}
			mXSub.emplace_back(points[i][0], points[i][1] - points[i][0]);
		}
		return iRet;
	}
	int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{
	vector<vector<int>> points;
	int k;
	{
		Solution sln;
		points = { {1,3},{2,0},{5,10},{6,-10} }, k = 1;
		auto res = sln.findMaxValueOfEquation(points, k);
		Assert(4, res);
	}
	{
		Solution sln;
		points = { {0,0},{3,0},{9,2} }, k = 3;
		auto res = sln.findMaxValueOfEquation(points, k);
		Assert(3, res);
	}

//CConsole::Out(res);
}

2023年3月旧代码

 class Solution {
 public:
	 int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
		 m_c = points.size();
		 std::map<int,std::set<int>> mYSubXToX,mXToYSubX;
		 int iMax = INT_MIN;
		 for (int i = 0; i < m_c; i++ )
		 {
			 const vector<int>& pt = points[i];
			 //删除x的差的绝对值大于k
			 while (mXToYSubX.size() && ((mXToYSubX.begin()->first + k) < pt[0]))
			 {
				 for (const auto& ySubX : mXToYSubX.begin()->second)
				 {
					 mYSubXToX[ySubX].erase(mXToYSubX.begin()->first);
					 if (mYSubXToX[ySubX].empty())
					 {
						 mYSubXToX.erase(ySubX);
					 }
				 }
				 mXToYSubX.erase(mXToYSubX.begin());
			 }
			 if (mYSubXToX.size())
			 {
				 iMax = max(iMax, mYSubXToX.rbegin()->first + pt[0] + pt[1]);
			 }
			 const int iYSubX = pt[1] - pt[0];
			 mXToYSubX[pt[0]].insert(iYSubX);
			 mYSubXToX[iYSubX].insert(pt[0]);
		 }
		 return iMax;
	 }
	 int m_c;
 };

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法C++ 实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/270977.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【低照度图像增强系列(2)】Retinex(SSR/MSR/MSRCR)算法详解与代码实现

前言 ☀️ 在低照度场景下进行目标检测任务&#xff0c;常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题&#xff0c;给检测带来一定的难度。 &#x1f33b;使用图像增强模块对原始图像进行画质提升&#xff0c;恢复各类图像信息&#xff0c;再使用目标检…

nosql--RedisTemplate定制化

nosql--RedisTemplate定制化 1、序列化2、如果使用redis中保存数据会使用默认的序列化机制&#xff0c;导致redis中保存的对象不可视2.1将所有的对象以JSON的形式保存2.2配置reids自定义配置2.3转化成功2.4配置文件代码 3redis客户端 1、序列化 stringRedisTemplate RedisTemp…

虚拟机Windows Server 2012 与ubuntu的安装与布置

介绍虚拟机 虚拟机&#xff08;Virtual Machine&#xff0c;简称VM&#xff09;是一种通过软件模拟的计算机系统&#xff0c;可以在一台物理计算机上同时运行多个独立的操作系统和应用软件。虚拟机将物理计算机的硬件资源&#xff08;如处理器、内存、硬盘等&#xff09;虚拟化…

vue3 全局配置Axios实例

目录 前言 配置Axios实例 页面使用 总结 前言 Axios 是一个基于 Promise 的 HTTP 客户端&#xff0c;用于浏览器和 Node.js 环境。它提供了一种简单、一致的 API 来处理HTTP请求&#xff0c;支持请求和响应的拦截、转换、取消请求等功能。关于它的作用&#xff1a; 发起 HTTP …

ARM Cortex-A学习(1):GIC(通用中断控制器)详解

文章目录 1 Cortex-A核中断1.1 处理器模式1.2 IRQ模式 2 GIC的操作2.1 CPU Interface2.2 Distributor GIC(通用中断控制器, Generic Interrupt Controller)是一种用于处理中断的硬件组件&#xff0c;它的主要功能是协调和管理系统中的中断请求&#xff0c;确保它们被正确地传递…

MYSQL一一函数一一流程函数

咱今天讲的是MySQL函数中的流程函数&#xff0c;会有3小题和一个综合案例帮助大家理解 流程函数是很常用的一类函数&#xff0c;可以在SQL语句中实现条件筛选&#xff0c;从而提高语句的效率 小题&#xff1a; ①if语句&#xff1a; select if(flash,ok,error); //如果…

SpringBoot 3.2.0 基于SpringDoc接入OpenAPI实现接口文档

依赖版本 JDK 17 Spring Boot 3.2.0 SpringDoc 2.3.0 工程源码&#xff1a;Gitee 导入依赖 <properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><project.build.sourceEnco…

Modbus转Profinet网关解决设备通讯不稳的问题

通讯不稳定&#xff1a;表现为数据断断续续&#xff0c;多半是由于线路干扰、接口不匹配、程序不稳定、等原因造成。 解决方案&#xff1a;在原配电柜添加Modbus转Profinet网关&#xff08;XD-MDPN100/2000&#xff09;即可解决通迅该问题&#xff0c;Modbus转Profinet网关&…

MyBatis的缓存

为什么使用缓存&#xff1f; 首次访问时&#xff0c;查询数据库&#xff0c;并将数据存储到内存中&#xff1b;再次访问时直接访问缓存&#xff0c;减少IO、硬盘读写次数、提高效率 Mybatis中的一级缓存和二级缓存&#xff1f; 一级缓存: 它指的是mybatis中的SqlSession对象的…

springCould中的Ribbon-从小白开始【5】

目录 1.什么是Ribbo❤️❤️❤️ 2.eureka自带Ribbon ❤️❤️❤️ 3. RestTemplate❤️❤️❤️ 4.IRule❤️❤️❤️ 5.负载均衡算法❤️❤️❤️ 1.什么是Ribbo 1.Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端,负载均衡的工具。2.主要功能是提供客户端的软件…

贪吃蛇小游戏的代码实现之知识点铺垫篇

今天给大家介绍一个很经典的小游戏&#xff0c;它和扫雷在经典小游戏这方面可以说是旗鼓相当&#xff0c;它的名字就是贪吃蛇。贪吃蛇游戏最初为单机模式&#xff0c;后续又陆续推出团战模式、赏金模式、挑战模式等多种玩法。该游戏具体玩法是&#xff1a;用游戏把子上下左右控…

关于Python里xlwings库对Excel表格的操作(十九)

这篇小笔记主要记录如何【取消合并单元格】。 前面的小笔记已整理成目录&#xff0c;可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 &#xff08;1&#xff09;如何安装导入xlwings库&#xff1b; &#xff08;2&#xff09;如何在Wps下使用xlwi…

关于“Python”的核心知识点整理大全42

目录 game_functions.py game_functions.py game_functions.py alien_invasion.py 14.4 小结 第&#xff11;5 章 生成数据 15.1 安装 matplotlib 15.1.1 在 Linux 系统中安装 matplotlib 15.1.2 在 OS X 系统中安装 matplotlib 注意 15.1.3 在 Windows 系统中安装…

如何学习VBA_3.2.10:人机对话的实现

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的劳动效率&#xff0c;而且可以提高数据处理的准确度。我推出的VBA系列教程共九套和一部VBA汉英手册&#xff0c;现在已经全部完成&#xff0c;希望大家利用、学习。 如果…

鸿蒙的基本项目_tabbar,首页,购物车,我的

以上效果&#xff0c;由四个ets文件实现&#xff0c;分别是容器页面。首页&#xff0c;购物车&#xff0c;我的。 页面里的数据&#xff0c;我是用json-server进行模拟的数据。 一、容器页面 使用组件Tabs和Tabcontent结合。 import Home from "./Home"; import …

Ai企业系统源码 Ai企联系统源码 商用去授权 支持文心 星火 GPT4等等20多种接口

智思Ai系统2.4.9版本去授权&#xff08;可商用&#xff09;支持市面上所有版本的接口例如&#xff1a;文心、星火、GPT4等等20多种接口&#xff01;代过审AI小程序类目&#xff01;&#xff01;&#xff01; 安装步骤&#xff1a; 1、在宝塔新建个站点&#xff0c;php版本使用…

【华为机试】2023年真题B卷(python)-分糖果

一、题目 题目描述&#xff1a; 小明从糖果盒中随意抓一把糖果&#xff0c;每次小明会取出一半的糖果分给同学们。 当糖果不能平均分配时&#xff0c;小明可以选择从糖果盒中&#xff08;假设盒中糖果足够&#xff09;取出一个糖果或放回一个糖果。 小明最少需要多少次&#xf…

2007年AMC8数学竞赛中英文真题典型考题、考点分析和答案解析

今天&#xff0c;我们来继续研究AMC8竞赛的真题。通过反复研究历年真题&#xff0c;不仅可以掌握AMC8这个竞赛的命题规律和常见考点&#xff0c;通过真题的详细解析可以建立自己的解题思路、举一反三&#xff0c;还可以通过做真题不断发现自己的薄弱点查漏补缺。 今天我们来看看…

FreeRTOS互斥量解决优先级反转问题

FreeRTOS互斥量 目录 FreeRTOS互斥量一、概念二、优先级反转三、互斥量解决优先级反转 一、概念 FreeRTOS中的互斥量&#xff08;Mutex&#xff09;是一种特殊的二值信号量&#xff0c;它支持互斥量所有权、递归访问以及防止优先级翻转的特性。在FreeRTOS中&#xff0c;互斥量…

pytorch中池化函数详解

1 池化概述 1.1 什么是池化 池化层是卷积神经网络中常用的一个组件&#xff0c;池化层经常用在卷积层后边&#xff0c;通过池化来降低卷积层输出的特征向量&#xff0c;避免出现过拟合的情况。池化的基本思想就是对不同位置的特征进行聚合统计。池化层主要是模仿人的视觉系统…