智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于指数分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.指数分布算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用指数分布算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.指数分布算法

指数分布算法原理请参考:https://blog.csdn.net/u011835903/article/details/131025569
指数分布算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


指数分布算法参数如下:

%% 设定指数分布优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明指数分布算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/270422.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《Halcon 100项目-2》Halcon查找零件个数

Halcon查找零件个数 read_image (Image20231225201927, D:/image/bilibili/photo/屏幕截图 2023-12-25 201927.png) rgb1_to_gray (Image20231225201927, GrayImage)threshold (GrayImage, Region, 0, 128) draw_rectangle1 (200000, Row1, Column1, Row2, Column2) gen_recta…

redis基本用法学习(C#调用StackExchange.Redis操作redis)

StackExchange.Redis是基于C#的高性能通用redis操作客户端,也属于常用的redis客户端之一,本文学习其基本用法。   新建Winform项目,在Nuget包管理器中搜索并安装StackExchange.Redis,如下图所示:   StackExchange.…

ElasticSearch 使用映射定义索引结构

动态映射 dynamic 可选值解释true默认值,启用动态映射,新增的字段会添加到映射中runtime查询时动态添加到映射中false禁用动态映射,忽略未知字段strict发现未知字段,抛出异常 显示映射 创建映射 PUT user {"mappings&qu…

sql_lab之sqli注入中的cookie注入

Cookei注入(gxa的从cookei注入) 1.打开控制台 2.验证id2时的值 document.cookie"id2" 3.判断是上面闭合方式 document.cookie"id2 -- s" 有回显 说明是’单引号闭合 4.用order by 判断字段数 5.用联合查询判断回显点 接下来的…

C语言 指针

C语言学习! 目录 文章目录 前言 一、指针是什么? 二、指针变量的大小 三、指针和指针类型 四、指针和函数 五、野指针 5.1野指针成因 5.2 如何规避野指针 六、指针运算 6.1 指针- 整数 6.2 指针-指针 6.3 指针的关系运算 总结 前言 指针理解的2个要点&a…

(2023|CVPR,Corgi,偏移扩散,参数高斯分布,弥合差距)用于文本到图像生成的偏移扩散

Shifted Diffusion for Text-to-image Generation 公众:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 简介 2. 方法 2.1 偏移扩散 3. 实验 3.1 无监督文本到图像生成 3.2 无…

IDEA Maven Helper插件 解决jar冲突

Jar包冲突报错 程序抛出java.lang.ClassNotFoundException异常; 程序抛出java.lang.NoSuchMethodError异常; 程序抛出java.lang.NoClassDefFoundError异常; 程序抛出java.lang.LinkageError异常等;Maven Jar包管理机制 在Maven项…

设计模式--工厂方法模式

实验3:工厂方法模式 本次实验属于模仿型实验,通过本次实验学生将掌握以下内容: 1、理解工厂方法模式的动机,掌握该模式的结构; 2、能够利用工厂方法模式解决实际问题。 [实验任务]:加密算法 目前常用…

数据库管理-第127期 LSM Tree(202301225)

数据库管理-第127期 LSM Tree(202301225) 说起分布式数据库,绕不开的一个话题就是LSM Tree,全称为log-structured merge-tree,回到吕海波老师授权过的那句话“没搞过Oracle的,但又是数据库圈里的人&#x…

《我在北京送快递》平凡隽永的时刻,对人生更具意义

《我在北京送快递》平凡隽永的时刻,对人生更具意义 胡安焉 文章目录 《我在北京送快递》平凡隽永的时刻,对人生更具意义[toc]摘录感悟 摘录 转“没有期限的承诺无疑就是委婉的拒绝” 转书友:亨利福特说,我聘的是一双手&#xff0…

基于 FFmpeg 的跨平台视频播放器简明教程(十二):Android SurfaceView 显示图片和播放视频

系列文章目录 基于 FFmpeg 的跨平台视频播放器简明教程(一):FFMPEG Conan 环境集成基于 FFmpeg 的跨平台视频播放器简明教程(二):基础知识和解封装(demux)基于 FFmpeg 的跨平台视频…

LeetCode-回文链表(234)

题目描述: 给你一个单链表的头节点 head ,请你判断该链表是否为回文链表。如果是,返回 true ;否则,返回 false 。 因为这一题是受到876题求链表中间节点的启发,所以在这里也加一下。 876.链表的中间结点…

格密码:傅里叶矩阵

目录 一. 铺垫性介绍 1.1 傅里叶级数 1.2 傅里叶矩阵的来源 二. 格基与傅里叶矩阵 2.1 傅里叶矩阵详细解释 2.2 格基与傅里叶矩阵 写在前面:有关傅里叶变换的解释太多了,这篇博客主要总结傅里叶矩阵在格密码中的运用。对于有一定傅里叶变换基础的同…

python 解决手机拍的书籍图片发灰的问题

老师给发的作业经常是手机拍的,而不是扫描,背景发灰,如果二次打印就没有看了,象这样: 如果使用photoshop 处理,有些地方还是扣不干净,不如python 做的好,处理后如下: 具体…

一个基于多接口的业务自动化测试框架!

这是一个成熟的框架,不是要让别人当小白鼠,它已经先后在两家公司的5条业务线进行了推广应用,用例条数到了几千条以上,并且从2018年开始每天都在CI/CD流程中被调用执行。 已有那么多接口测试框架,为什么重复造轮子&…

详解Java反射机制reflect(一学就会,通俗易懂)

1.定义 #2. 获取Class对象的三种方式 sout(c1)结果为class com.itheima.d2_reflect.TestClass 获取到了Class对象就相当于获取到了该类 2.获取类的构造器 3.获取全部构造器对象 2.根据参数类型获取构造器对象 类型后必须加.class 3.构造器对象调用构造器方法 4.暴力访问 4.获…

11-GraalVM元原生时代的Java虚拟机

文章目录 GraalVM诞生的背景Java在微服务/云原生时代的困境事实矛盾 问题根源Java离不开虚拟机 解决方案革命派保守派 GraalVM入门GraalVM特征GraalVM下载和安装GraalVM下载win10安装及配置linux安装及配置 GraalVM初体验(Linux)多语言开发(了解即可、官网有Demo)GraalCompiler…

【Gitlab】CICD流水线自动化部署教程

第一步,准备 GitLab 仓库 这个不用多说,得先保证你的项目已经托管在一个 GitLab 仓库中。 第二步,定义 .gitlab-ci.yml 文件 在你的项目根目录中创建一个 .gitlab-ci.yml 文件。这个文件将定义所有 CI/CD 的工作流程,包括构建、测…

连锁餐饮数字化:一体化运营管控平台

内容来自演讲:刘腾飞 | 上海奥谱创网络科技有限公司 | CEO 摘要 本文介绍了企业级管理系统的需求和现状,以及如何通过数据指标为依据的改善循环来优化企业的运营。文章还提出了场景驱动、迭代上线的方法,并介绍了两个平台、三个统一的解决方…

RK3568平台开发系列讲解(Linux系统篇)Linux 热拔插机制 mdev的使能

🚀返回专栏总目录 文章目录 一、什么是热插拔二、热插拔的机制三、mdev的开启沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍 Linux 热拔插。 一、什么是热插拔 热插拔是指在设备运行的情况下,能够安全地插入或拔出硬件设备,而无需关闭或重启系统。这意…