[C/C++]数据结构: 链式二叉树的构建及遍历

一: 💬二叉树的概念

1.1:🚩 概念

       二叉树是指树中节点的度不大于2的有序树,它是一种最简单且重要的树,二叉树的递归定义为:二叉树是一颗空树,或者是一颗由一个根节点和两颗互不相交的,分别称为跟的左孩子和右孩子树组成的非空树,其中左子树和右子树都是二叉树.

1.2 : ⚡特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  2.  完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

1.3: 🌟二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1 .
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有 n0=n2 +1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=lg(n+1) (ps:是log以2为底,n+1为对数)
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

二:🥦链式二叉树的结构

        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。由于二叉树可以分为根,左子树,右子树,而其左右子树又可以分为根左子树,右子树,所以链式二叉树非常适合使用递归. 

typedef char BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

三: ⛲链式二叉树的创建及遍历

1.前序遍历:先遍历树的根在遍历书的左子树和右子树

前序遍历递归图解:

代码:

void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	printf("%c ", root->data);//先访问根节点
	BinaryTreePrevOrder(root->left);//访问左子树
	BinaryTreePrevOrder(root->right);//访问右子树
}

2.中序遍历:和前序遍历思想一样,不过遍历顺序发生改变,先便利左子树,再遍历根,再遍历右子树

void BinaryTreeInOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	BinaryTreeInOrder(root->left);
	printf("%c ", root->data);
	BinaryTreeInOrder(root->right);
}

3.后序遍历:先遍历左子树再遍历右子树最后遍历根节点

void BinaryTreePostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	BinaryTreePostOrder(root->left);
	BinaryTreePostOrder(root->right);
	printf("%c ", root->data);
}

4.层序遍历:

        层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历.

实现方法: 层序遍历要使用到队列,忘记的帖子可以看[C/C++]数据结构 栈和队列

首先将节点1入队列

若1的左右节点不为空,再将左右节点依次入队,再把节点1出队(相当于遍历节点1)

重复上诉步骤,每次出队时先将这个节点不为空的子节点入队,当队列为空时就说明二叉树遍历完了

void BinaryTreeLevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		printf("%c ", front->data);

		if (front->left)
			QueuePush(&q, front->left);
		if (front->right)
			QueuePush(&q, front->right);
	}
	QueueDestory(&q);
}

5.二叉树的构建

通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树,其中'#'代表NULL

还是采用递归的思想,首先函数的形参需要一个字符串数组,和一个整形指针,该指针是用来记录访问到数组的位置.遇到'#'就让改指针++,并返回NULL,否则就开辟一个节点,使该节点的数据域指向对应数组的元素,再递归遍历该节点的左子树和右子树

BTNode* BinaryTreeCreate(BTDataType* a, int* pi)
{
	if (a[*(pi)]=='#')
	{
		(*pi)++;
		return NULL;
	}

	BTNode* root = (BTNode*)malloc(sizeof(BTNode));
	if (root == NULL)
	{
		perror("malloc");
		exit(-1);
	}

	root->data = a[(*pi)++];
	root->left  = BinaryTreeCreate(a, pi);
	root->right = BinaryTreeCreate(a, pi);
	return root;
}

四:其他相关功能

像求二叉树的节点个数,高度等功能都是利用递归思想解决的,博主就不过多介绍了,需要的帖子可以看下方代码

//节点个数
int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	else
		return 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
}

// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	else if (root->left == NULL && root->right == NULL)
		return 1;
	else
		return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
	assert(k >0);
	if(root==NULL)
		return 0;
	else if (k == 1)
		return 1;
	else
	{
		return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
	}

}
//求二叉树的高度
int BinaryTreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;
	else
	{
		int left = BinaryTreeHeight(root->left);
		int right = BinaryTreeHeight(root->right);
		return left > right ? left+1 : right+1;
	}
}
//在二叉树中查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;

	if (root->data == x)
		return root;

	BTNode* ret1 = BinaryTreeFind(root->left, x);
	if (ret1 != NULL)
		return ret1;

	BTNode* ret2 = BinaryTreeFind(root->right, x);
	if (ret2 != NULL)
		return ret2;

	return NULL;
}
//销毁二叉树
void BinaryTreeDestory(BTNode* root)
{
	if (root == NULL)
		return;
	BinaryTreeDestory(root->left);
	BinaryTreeDestory(root->right);
	free(root);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/269787.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux部署MeterSphere结合内网穿透实现远程访问服务管理界面

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

【网络编程】基于UDP数据报实现回显服务器程序

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 前言 我们如果…

Python基础入门第六节课笔记

while循环 for循环用于针对序列中的每个元素的一个代码块。 while循环是不断的运行&#xff0c;直到指定的条件不满足为止。 while 条件&#xff1a; 条件成立重复执行的代码1 条件成立重复执行的代码2 …….. 当条件成立时&#xff0c;执行下方缩…

【JavaEE初阶一】线程的概念与简单创建

1. 认识线程&#xff08;Thread&#xff09; 1.1 关于线程 1.1.1 线程是什么 由前一节的内容可知&#xff0c;进程在进行频繁的创建和销毁的时候&#xff0c;开销比较大&#xff08;主要体现在资源的申请和释放上&#xff09;&#xff0c;线程就是为了解决上述产生的问题而提…

软件测试 —— 如何测试图片上传功能?

作为一名专业的软件测试人员&#xff0c;测试图片上传功能是一个重要的任务&#xff0c;以下是一些测试该功能的常用方法&#xff1a; 1. 上传功能测试&#xff1a;确保图片上传功能正常工作&#xff0c;包括选择图片文件、点击上传按钮、上传进度显示、上传成功/失败的提示等。…

postman的下载安装和使用

第一章、使用postman向后端发送请求 1.2&#xff09;postman下载与安装使用 我的百度网盘postman点击下载 提取码&#xff1a;bybp 下载后双击.exe文件直接安装 点击此次创建集合 点击此处创建请求 1.2&#xff09;发送get请求 选择自己的请求方式&#xff0c;输入请求…

1861_什么是H桥

Grey 全部学习内容汇总&#xff1a; GitHub - GreyZhang/g_hardware_basic: You should learn some hardware design knowledge in case hardware engineer would ask you to prove your software is right when their hardware design is wrong! 1861_什么是H桥 H桥电路可以…

Qt动态连接库/静态连接库创建与使用,QLibrary动态加载库

问题&#xff1a;下图中是一个生成库的模块&#xff0c;其中qglobal.h的使用有点疑惑&#xff0c;可以参考下文链接。 ​​​​​​​​​​​​https://www.cnblogs.com/techiel/p/8035014.htmlhttps://www.cnblogs.com/techiel/p/8035014.html

Redis过期删除策略和内存淘汰策略

1、设置Redis键过期时间 Redis提供了四个命令来设置过期时间&#xff08;生存时间&#xff09;。 EXPIRE <key> <ttl> &#xff1a;表示将键 key 的生存时间设置为 ttl 秒。 PEXPIRE <key> <ttl> &#xff1a;表示将键 key 的生存时间设置为 ttl 毫秒。…

算法基础之最长上升子序列 II

最长上升子序列 II 核心思想&#xff1a;不去遍历全部的数据(会有冗余) 用vector模拟栈 ①如果该元素大于栈顶元素,将该元素入栈 ②替换掉第一个大于或者等于这个数字的那个数&#xff08;二分&#xff09; #include<iostream>#include<algorithm>#include&l…

Kafka日志文件存储

日志文件 kafka在server.properties配置文件中通过log.dir属性指定了Kafka的日志存储路径 核心文件 1. log文件 实际存储消息的日志文件, 大小固定1G(参数log.segment.bytes可配置), 写满后就会新增一个新的文件, 文件名是第一条消息的偏移量 2. index文件 以偏移量为索引…

4.9【共享源】流的多生产者和消费者

当一个系统中存在多个生产者和消费者时&#xff0c;情况可能会变得复杂。 了解生产者和消费者流之间支持的基数非常重要。 本质上&#xff0c;一个生产者流可以与多个消费者流连接&#xff0c;但一个消费者流只能连接到一个生产者流。请注意&#xff0c;基数关系仅限于单个流&…

3D渲染农场什么比较好用 2024渲染农场最新收费实测

随着数字设计领域的进步与发展&#xff0c;对于3D渲染服务的需求日益增加。3D渲染农场这一概念因此变得极为重要&#xff0c;特别是在电影制作、建筑可视化以及产品设计等行业中。现在&#xff0c;让我们深入了解3D渲染农场的定义以及市面上优秀的3D渲染服务提供商。 一、什么是…

Ai画板原理

在创建时画板可以选择数量和排列方式 也可以采用这个图片左上的画板工具&#xff0c;选择画板在其他地方画框即可生成&#xff0c;同时可以在属性框中可以修改尺寸大小 选择全部重新排列可以进行创建时的布局

STM32 支持IAP的bootloader开发,使用串口通过Ymodem协议传输固件

资料下载: https://download.csdn.net/download/vvoennvv/88658447 一、概述 关于IAP的原理和Ymodem协议&#xff0c;本文不做任何论述&#xff0c;本文只论述bootloader如何使用串口通过Ymodem协议接收升级程序并进行IAP升级&#xff0c;以及bootloader和主程序两个工程的配置…

yolo实现数据增强(数据集不够,快速增加数据集)

目录结构 附上数据增强的全部代码 # -*- codingutf-8 -*-import time import random import copy import cv2 import os import math import numpy as np from skimage.util import random_noise from lxml import etree, objectify import xml.etree.ElementTree as ET imp…

makefile教程(1)

makefile教程 makefile是什么&#xff1a; makefile是用户自行完成的IDE&#xff08;integrated development environment集成开发环境&#xff09;程序&#xff0c;与传统的操作系统下的编译不同&#xff0c;makefile可以通过用户自行安排&#xff0c;决定文件的编译顺序&am…

将elementUI,NaiveUI的progress环形进度条设置为渐变色

需求 &#xff1a;进度条要有一个渐变效果。效果图&#xff1a; NaiveUI和elementUI的官方progress组件都是只能设置一种颜色&#xff0c;不符合需求所以改一下。 其实NaiveUI和elementUI设置进度条的实现方式基本一样都是使用svg渲染出两个path&#xff0c;第一个是底色&…

ssh工具 向指定的ssh服务器配置公钥

此文分享一个python脚本,用于向指定的ssh服务器配置公钥,以达到免密登录ssh服务器的目的。 效果演示 🔥完整演示效果 👇第一步,显然,我们需要选择功能 👇第二步,确认 or 选择ssh服务器 👇第三步,输入ssh登录密码,以完成公钥配置 👇验证,我们通过ssh登录…

如何使用Docker将.Net6项目部署到Linux服务器(二)

目录 二 安装Redis 2.1 基本安装 2.1.1 下载Redis 2.1.2 解压并安装Redis 2.1.3 编译Redis 2.1.3 配置config文件 2.1.4 配置redis服务 2.1.5 关闭redis服务 2.2 Docker安装 2.2.1 拉取镜像 2.2.2 查看镜像 2.2.2 创建挂载目录 2.2.3 创建配置文件 2.2.4 创建容器…