TwIST算法MALTLAB主程序详解

TwIST算法MALTLAB主程序详解

关于TwIST算法的具体原理可以参考:
链接: https://ieeexplore.ieee.org/abstract/document/4358846
链接: https://blog.csdn.net/jbb0523/article/details/52193209

该算法的MATLAB源代码:
链接: http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm

1. 函数定义与输入输出变量

主函数的定义如下所示,TwIST包含7个输出变量和若干个输入变量,其中包含3个必需输入变量和若干个可选输入变量(varargin)。具体每个变量的含义可以参考MATLAB TwIST.m文件中的解释。下文仅对一些关键参数进行解释。

function [x,x_debias,objective,times,debias_start,mses,max_svd] = ...
         TwIST(y,A,tau,varargin)

该算法主要解决如下正则化问题:

arg min_x = 0.5*|| y - A x ||_2^2 + tau phi( x )

也就是论文中式(1)所示,注意在MATLAB代码中存在一些符号表示的改变。如K➡A,λ➡tau等。
在这里插入图片描述

其具体的迭代公式如原论文中式(17)-(19)所示
在这里插入图片描述
从式(17)-(19)中看,我们需要 x 0 , α , β , y , K , Ψ λ x_{0},\alpha,\beta,y,K,\Psi_{\lambda} x0,α,β,y,K,Ψλ等一系列参数,上述迭代公式方可正确运行。针对算法,输出变量中x即为目标的估计值,x_debias为目标估计值的去偏结果,获得这一结果往往需要在主循环迭代结束后,通过适当的去偏迭代,消除正则化器造成的一些偏差。

输入变量含义
y测量结果,可以为1为向量或者二维数组
A对应原论文中的K
tau正则化参数,对应原论文中的λ
Psi去噪函数句柄,对应原论文中的去噪函数ψ
Phi正则化器的函数句柄,对应原论文中的Φ
lambdaTwIST算法的lam1参数,对应原论文中的 λ 1 \lambda_{1} λ1参数,论文中的 λ N \lambda_{N} λN在程序中被设置为常数1
alphaTwIST的alpha参数 (详见论文式 (22))
betaTwIST的beta参数 (详见论文式 (23))

2.算法主要步骤

TwIST.m的代码很长,但主要包含的内容并不多。下文主要对在代码中关键部分进行解释。按照从前往后的顺序,主要包含了以下几个内容:

(1)变量注释。

这一部分对函数的每一个变量都进行了注释,包括必须变量和可选变量。建议按照以上迭代公式了解关键参数的含义。

(2)变量设定。

这一部分主要在变量注释和初始化两部分之间。
主要定义了

  • 各个变量的默认值。
  • 使用一个switch-case分支语句读取varargin所代表的可选输入参数,实现可选变量的自定义功能。
  • 对主要变量,如alpha和beta进行设定。对于这个部分,多说一点。如原论文中所示

在这里插入图片描述
在这里插入图片描述

实际上存在如下关系:

0 < ξ 1 ≤ λ 1 < λ N ≤ ξ m , ξ ‾ m ≡ m a x ( 1 , ξ m ) 0< \xi_{1} ≤ \lambda_{1} < \lambda_{N} ≤ \xi_{m} , \overline{\xi}_{m}≡max(1,\xi_{m}) 0<ξ1λ1<λNξm,ξmmax(1,ξm)
而在程序中,作者直接用 λ 1 \lambda_{1} λ1表示了 ξ 1 \xi_{1} ξ1,同时设定 ξ m \xi_{m} ξm λ N = 1 \lambda_{N}=1 λN=1。虽然可能有点误差,不过我觉得无可厚非。

关于函数句柄,需要注意的是x在这里并不是只迭代的解x,而是一个指代未知变量的参数,如下面的AT(y)中的y。

if ~isa(A, 'function_handle')
   AT = @(x) A'*x;
   A = @(x) A*x;
end

Aty = AT(y);

(3)初始化。

初始化主要实现了 x 0 x_{0} x0的设置方法,验证了phi(x)和psi(x)函数是否有效,以及其他一些变量的初始设置。

(4)TwIST主循环迭代。

这一部分是整个代码中最主要的部分。

TwIST算法的迭代包含两个主要部分:TwIST迭代和IST迭代。IST_iters和TwIST_iters的值用于确定当前应该执行哪一种迭代。根据条件判断,当TwIST_iters达到特定阈值或满足特定条件时,会切换到执行IST迭代,而不是继续TwIST迭代;反之亦然。

这一部分主要包含2个while循环,两个while循环会一直运行,直到满足对应条件。

在第二个while循环中有一个 if-else结构,用于判断进行何种操作。在TwIST循环中,IST_iters和TwIST_iters并不会一直增加,而只是一个判断flag,结合对应的if else,完成判断。迭代次数的增加实际上由iter控制。

建议在主循环设置断点,并将IST_iters和TwIST_iters后边的分号去掉,使用demo进行调试。观察IST_iters和TwIST_iters的值变化。这样,IST_iters和TwIST_iters取什么值执行什么语句就一清二楚了。

去噪函数的作用

此外,在主循环中,还有一行比较重要。它解决了这样一个问题:原论文中的迭代公式中并没有psi去噪函数这样一个变量,那它在程序中到底起到了什么作用呢?

x = psi_function(xm1 + grad/max_svd,tau/max_svd);

代码中其他位置的psi_function只是传参或者验证,而该位置的psi_function是起到了实质作用的。psi_function主要用于执行阈值或收缩操作,通常涉及对给定向量或信号进行阈值处理。它可能采用软阈值(soft thresholding)或硬阈值(hard thresholding)等技术,用于将信号的幅度调整为零或接近零,从而产生更稀疏的表示。

稀疏性操作

            if sparse
                mask = (x ~= 0);
                xm1 = xm1.* mask;
                xm2 = xm2.* mask;
            end

以上代码是处理稀疏性的操作。当 sparse 变量为真时(即 sparse 变量为非零值),代码会执行以下操作:

  • 首先,创建一个逻辑掩码 mask,该掩码用于标识变量 x 中非零元素的位置。也就是说,mask 的元素为 1 表示对应 x 中的元素不为零,为 0 表示对应 x 中的元素为零。
  • 然后,通过将 xm1 和 xm2 分别与 mask 相乘,将 xm1 和 xm2 中对应于 x 中零元素位置的部分置为零。
  • 这样可以确保在算法的迭代过程中,对 x 的更新仅在非零位置进行,以保持其稀疏性。

(5)去偏。

在主循环之后,还有一个去偏阶段(debias phase)。这是一个可选操作,作者给出的解释是 :

If the ‘Debias’ option is set to 1, we try to remove the bias from the l1 penalty, by applying CG to the least-squares problem obtained by omitting the l1 term and fixing the zero coefficients at zero.

可见,这一部分主要是为了消除l1惩罚的偏差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/269240.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity查安卓Native Crash的方法,定位SO报错函数

需要用到两个工具Il2CppDumper和IDA_Pro&#xff0c;网上可以下到对应的软件 可以看到报错的位置是libil2cpp.so 0000000000AFF820 接下来要做的事情就是找到0000000000AFF820对应的函数是哪个 解包 Il2CppDumper解析so文件和符号表&#xff0c;查看对应的函数表 把apk后缀…

Cloudstack多个管理服务器节点

https://docs.cloudstack.apache.org/en/4.18.0.0/adminguide/reliability.html 参考翻译&#xff1a; 代理上支持多个管理服务器 在具有多个管理服务器的Cloudstack环境中&#xff0c;可以根据算法配置代理&#xff0c;将其连接到哪个管理服务器。这对于内部负载均衡器或高可…

大数据----MapReduce实现统计单词

目录 一、简介二、实现单词统计数据准备编程MapReduceJob 三、运行四、结果 一、简介 Hadoop MapReduce 是一个编程框架&#xff0c;它可以轻松地编写应用程序&#xff0c;以可靠的、容错的方式处理大量的数据(数千个节点)。 正如其名&#xff0c;MapReduce 的工作模式主要分…

docker部署mysql主主备份 haproxy代理(swarm)

docker部署mysql主主备份 haproxy代理&#xff08;swarm&#xff09; docker部署mysql主主备份 docker部署mysql主主备份&#xff08;keepalived&#xff09;跨主机自动切换 docker部署mysql主主备份 haproxy代理&#xff08;swarm&#xff09; 1. 环境准备 主机IPnode119…

28、清华大学脑机接口实验组SSVEP数据集:通过视觉触发BCI[飞一般的赶脚!]

前言&#xff1a; 哈喽&#xff0c;最近对清华大学脑机接口的数据进行了尝试&#xff0c;输入到了DL模型中&#xff0c;以下是本人对于清华BCI数据的个人见解。 数据地址&#xff1a; 清华大学脑机接口研究组 (tsinghua.edu.cn) 打开网站可以看到有很多个数据&#xff0c;官…

洛谷——【数据结构1-2】二叉树

文章目录 题目【深基16.例1】淘汰赛题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1基本思路&#xff1a;代码 【深基16.例3】二叉树深度题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1基本思路&#xff1a;代码 [USACO3.4] 美国血统 American Heritage题目描…

小城交通大转型!苏州金龙助力杭州建德公交开新格局

新安江畔&#xff0c;密林丛生&#xff0c;一辆辆绿色巴士穿梭而行&#xff0c;杭州市首款纯电动无站立位公交车正在试运行中。 12月19日&#xff0c;杭州建德&#xff0c;23辆苏州金龙海格牌6米无站立位新能源纯电动公交车正式交付建德市公共交通运输有限公司。自此&#xff…

【AI】使用阿里云免费服务器搭建Langchain-Chatchat本地知识库

书接上文&#xff0c;由于家境贫寒的原因&#xff0c;导致我本地的GPU资源无法满足搭建Langchain-Chatchat本地知识库的需求&#xff0c;具体可以看一下这篇文章&#xff0c;于是我只能另辟蹊径&#xff0c;考虑一下能不能白嫖一下云服务器资源&#xff0c;于是去找网上找&…

2023航天推进理论基础考试划重点(W老师)绪论固体推进剂

1、推进系统的分类&#xff1a; 按工作原理分&#xff0c; 直接反作用发动机(喷气发动机) 火箭发动机、组合发动机、冲压发动机、涡轮喷气发动机、涡轮风扇发动机 间接反作用发动机 活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、航空电动机 2、后面不细讲的火箭发动机要…

Adobe软件打开后设置默认页面方式和默认鼠标方式

PDF文件打开后是默认显示&#xff0c;与显示器比例不协调&#xff0c;或大或小&#xff0c;总是需要手动调节阅读方式&#xff0c;解决方法如下&#xff1a; Adobe软件中可以设置默认页面方式&#xff0c;具体步骤如下&#xff1a; 编辑 (Edit)-首选项(Preferences)-辅助工具…

车牌识别系统的设计matlab图像处理

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;车牌23 获取完整论文报告源码源程序文件 一、 摘要 随着公路逐渐普及&#xff0c;我国的公路交通事业发展迅速&#xff0c;所以人工管理方式已经不能满着实际的需要&#xff0c;微电子、通信和计算机技术在交通领域的应用…

2024年最新Python爬虫入门『最强教程』新鲜出炉!

近年来&#xff0c;大数据成为业界与学术界最火热的话题之一&#xff0c;数据已经成为每个公司极为重要的资产。互联网大量的公开数据为个人和公司提供了以往想象不到的可以获取的数据量。而掌握网络爬虫技术可以帮助你获取这些有用的公开数据集。 爬虫能干什么呢&#xff1f;一…

【强化学习】PPO:近端策略优化算法

近端策略优化算法 《Proximal Policy Optimization Algorithms》 论文地址&#xff1a;https://arxiv.org/pdf/1707.06347.pdf 一、 置信域方法(Trust Region Methods) ​ 设 π θ o l d \pi_{\theta_{old}} πθold​​是先前参数为 θ o l d \theta_{old} θold​的策略网…

5个适合初学者的初级网络安全工作

前言&#xff1a; 网络安全涉及保护计算机系统、网络和数据免受未经授权的访问、破坏和盗窃 - 防止数字活动和数据访问的中断 - 同时也保护用户的资产和隐私。鉴于公共事业、医疗保健、金融以及联邦政府等行业的网络犯罪攻击不断升级&#xff0c;对网络专业人员的需求很高&…

三级安全教育二维码怎么生成

三级安全教育是工人进场上岗前必备的过程&#xff0c;也是施工项目中非常重要的一项工作&#xff0c;我们要合理规范地进行安全教育培训工作&#xff0c;提升真实性和可靠性&#xff0c;保障工人的安全到位。 1、将三级安全教育制作成二维码,放在施工现场等位置,工人可以随时随…

行人重识别数据集-统一为market1501数据集进行多数据集联合训练

一、前言 常用的数据集&#xff1a; 数据集下载链接&#xff1a;https://kaiyangzhou.github.io/deep-person-reid/datasets.html https://kaiyangzhou.github.io/deep-person-reid/datasets.html#sensereid-sensereid 二、数据集合并 第一步&#xff1a;market1501的数据集…

【史上最小白】Bert:双向 Transformer 编码器

Bert&#xff1a;双向 Transformer 编码器 Bert&#xff1a;论洞察语境&#xff0c;GPT 不如我深刻&#xff1b;论理解含义&#xff0c;ELMo 不如我全面输入阶段词嵌入&#xff1a;把词语转换为向量第一个预训练 Masked&#xff1a;学习语言的深层次理解尝试 1&#xff1a;预测…

一款CAT1产品天线定制-FPC天线无源数据测试示例

需求情况 根据产品的壳料内部结构&#xff0c;定制一款PFC天线&#xff0c;设备类型是4G-TLE&#xff0c;所以需要支持的频段范围比较宽&#xff0c;谐振要落在800MHz~1GHz与1.6GHz~2.6GHz之内。 天线阻抗、回波损耗、电压驻波情况 天线无源效率及增益情况 小结&#xff1a;整…

【交叉编译环境】安装arm-linux交叉编译环境到虚拟机教程(简洁版本)

就是看到了好些教程有些繁琐&#xff0c;我就写了一个 我这个解压安装的交叉编译环境是Linaro GCC的一个版本&#xff0c;可以用于在x86_64的主机上编译arm-linux-gnueabihf的目标代码 步骤来了 在你的Ubuntu系统中创建一个目录&#xff0c;例如/usr/local/arm&#xff0c;然后…

cesium实现区域贴图及加载多个gif动图

1、cesium加载多个gif动图 Cesium的Billboard支持单帧纹理贴图&#xff0c;如果能够将gif动图进行解析&#xff0c;获得时间序列对应的每帧图片&#xff0c;然后按照时间序列动态更新Billboard的纹理&#xff0c;即可实现动图纹理效果。为此也找到了相对于好一点的第三方库libg…