GoogleNet网络分析与demo实例

参考自 

  • up主的b站链接:霹雳吧啦Wz的个人空间-霹雳吧啦Wz个人主页-哔哩哔哩视频
  • 这位大佬的博客 Fun'_机器学习,pytorch图像分类,工具箱-CSDN博客

1. GoogLeNet网络详解

GoogLeNet在2014年由Google团队提出(与VGG网络同年,注意GoogLeNet中的L大写是为了致敬LeNet),斩获当年ImageNet竞赛中Classification Task (分类任务) 第一名。

原论文地址:深度学习面试题20:GoogLeNet(Inception V1) - 黎明程序员 - 博客园 (cnblogs.com)

GoogLeNet 的创新点:

1.引入了 Inception 结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理 (虽然VGG网络中也有,但该论文介绍的更详细)
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数,除去两个辅助分类器,网络大小只有vgg的1/20)
 

inception 结构

传统的CNN结构如AlexNet、VggNet(下图)都是串联的结构,即将一系列的卷积层和池化层进行串联得到的结构

这里GoogleNet提出了并联的思路

将特征矩阵同时输入到多个分支进行处理,并将输出的特征矩阵按深度进行拼接,得到最终输出

inception的作用:增加网络深度和宽度的同时减少参数

在 inception 的基础上,还可以加上降维功能的结构,如下图所示,在原始 inception 结构的基础上,在分支2,3,4上加入了卷积核大小为1x1的卷积层,目的是为了降维(减小深度),减少模型训练参数,减少计算量。

1×1卷积核的降维功能
同样是对一个深度为512的特征矩阵使用64个大小为5x5的卷积核进行卷积,不使用1x1卷积核进行降维的 话一共需要819200个参数,如果使用1x1卷积核进行降维一共需要50688个参数,明显少了很多。

辅助分类器(Auxiliary Classifier)
AlexNet 和 VGG 都只有1个输出层,GoogLeNet 有3个输出层,其中的两个是辅助分类层。

如下图所示,网络主干右边的 两个分支 就是 辅助分类器,其结构一模一样。
在训练模型时,将两个辅助分类器的损失乘以权重(论文中是0.3)加到网络的整体损失上,再进行反向传播。
 

辅助分类器的作用:

作用一:可以把他看做inception网络中的一个小细节,它确保了即便是隐藏单元和中间层也参与了特征计算,他们也能预测图片的类别,他在inception网络中起到一种调整的效果,并且能防止网络发生过拟合。


作用二:给定深度相对较大的网络,有效传播梯度反向通过所有层的能力是一个问题。通过将辅助分类器添加到这些中间层,可以期望较低阶段分类器的判别力。在训练期间,它们的损失以折扣权重(辅助分类器损失的权重是0.3)加到网络的整个损失上。
 

GoogLeNet 网络参数

pytorch搭建GoogLeNet

相比于 AlexNet 和 VggNet 只有卷积层和全连接层这两种结构,GoogLeNet多了 inception 和 辅助分类器(Auxiliary Classifier),而 inception 和 辅助分类器 也是由多个卷积层和全连接层组合的,因此在定义模型时可以将 卷积、inception 、辅助分类器定义成不同的类,调用时更加方便。
 

import torch.nn as nn
import torch
import torch.nn.functional as F

class GoogLeNet(nn.Module):
	# 传入的参数中aux_logits=True表示训练过程用到辅助分类器,aux_logits=False表示验证过程不用辅助分类器
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:   # eval model lose this layer
            return x, aux2, aux1
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

# Inception结构
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1) # 按 channel 对四个分支拼接  

# 辅助分类器
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x

# 基础卷积层(卷积+ReLU)
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

train.py

实例化网络时的参数

net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)

GoogLeNet的网络输出 loss 有三个部分,分别是主干输出loss、两个辅助分类器输出loss(权重0.3)

logits, aux_logits2, aux_logits1 = net(images.to(device))
loss0 = loss_function(logits, labels.to(device))
loss1 = loss_function(aux_logits1, labels.to(device))
loss2 = loss_function(aux_logits2, labels.to(device))
loss = loss0 + loss1 * 0.3 + loss2 * 0.3

predict

# create model
model = GoogLeNet(num_classes=5, aux_logits=False)

# load model weights
model_weight_path = "./googleNet.pth"

但是在加载训练好的模型参数时,由于其中是包含有辅助分类器的,需要设置strict=False

missing_keys, unexpected_keys = model.load_state_dict(torch.load(model_weight_path), strict=False)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/269166.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

概率论1:下象棋问题(3.5)

每日小语 时刻望着他人的眼色行事,是腾飞不了的。自己怎么想就积极地去做,这是需要胆量的。——广中平佑 题目 甲、乙二人下象棋, 每局甲胜的概率为a,乙胜的概率为b. 为简化问题,设没有和局的情况,这意味着a b1. 设想…

基于SpringBoot实现的高仿网盘

一、系统架构 前端:html | bootstrap | js | css 后端:SpringBoot | mybatis 环境:JDK1.8 | Mysql | Maven 二、代码及数据库 三、功能介绍 01. 登录 02. 主页 03. 新建文件夹 04. 上传文件 05. 分享文件 06. 提取分享文件 07. 分享文…

前端常用的Vscode插件

前端常用的Vscode插件🔖 文章目录 前端常用的Vscode插件🔖1. Chinese (Simplified) (简体中文) Language Pack for Visual Studio Code -- Vscode中文插件2. Code Runner -- 快速运⾏调试代码3. Live Server -- 实时重新加载本地开发服务器4. Image prev…

Linux之基础I/O

目录 一、C语言中的文件操作 二、系统文件操作I/O 三、文件描述符fd 1、文件描述符的引入 2、对fd的理解 3、文件描述符的分配规则 四、重定向 1、重定向的原理 2、重定向的系统调用dup2 五、Linux下一切皆文件 一、C语言中的文件操作 1、打开和关闭 在C语言的文…

骨传导耳机哪个品牌质量比较好?五大热门骨传导产品测评师点评

骨传导耳机的核心原理是利用骨骼传导声波。当声波产生时,这些耳机将声波转换为振动,这些振动通过颅骨直接传送到内耳。具体来说,骨传导耳机会把声波转化为机械振动,这些振动通过颅骨绕过外耳和中耳,直接作用于内耳的耳…

【Mathematical Model】Ransac线性回归Python代码

Ransac算法,也称为随机抽样一致性算法,是一种迭代方法,用于从一组包含噪声或异常值的数据中估计数学模型。Ransac算法特别适用于线性回归问题,因为它能够处理包含异常值的数据集,并能够估计出最佳的线性模型。 1 简介 …

RT-Smart 官方 ARM 32 平台 musl gcc 工具链下载

前言 RT-Smart 的开发离不开 musl gcc 工具链,用于编译 RT-Smart 内核与用户态应用程序 RT-Smart musl gcc 工具链代码当前未开源,但可以下载到 RT-Thread 官方编译好的最新的 musl gcc 工具链 ARM 32位 平台 比如 RT-Smart 最好用的 ARM32 位 qemu 平…

移动开发git版本控制经验之谈

移动开发git版本控制经验之谈 团队或应用规模是否会影响发布流程?这取决于具体情况。让我们来想象一下一个小型团队的创业公司。在这种情况下,通常是团队开发一个功能,然后直接发布。现在我们再来想象一个大型项目,比如一个银行应…

推荐五个免费的网络安全工具

导读: 在一个完美的世界里,信息安全从业人员有无限的安全预算去做排除故障和修复安全漏洞的工作。但是,正如你将要学到的那样,你不需要无限的预算取得到高质量的产品。这里有SearchSecurity.com网站专家Michael Cobb推荐的五个免费…

LSTM(长短期记忆网络)的设计灵感和数学表达式

1、设计灵感 LSTM(长短期记忆网络)的设计灵感来源于传统的人工神经网络在处理序列数据时存在的问题,特别是梯度消失和梯度爆炸的问题。 在传统的RNN(循环神经网络)中,信息在网络中的传递是通过隐状态向量进…

Vue编写登录注册页面前端校验

登录注册校验 template页面 <div class"app-login"><!--登录 --><div class"form"><el-form ref"form" size"large" autocomplete"off" v-if"isLogin" :model"registerData" :r…

网络监测之如何保障企业业务系统安全?

网络信息安全在网络时代的重要性不言而喻。随着互联网的普及和数字化进程的加速&#xff0c;网络已经成为人们生活、工作和学习的重要平台。在这个平台上&#xff0c;信息交流、数据存储、在线支付等都需要依赖于网络信息安全。其中企事业单位业务系统安全值得关注。 企事业单…

Linux文件系统与命令行

什么是命令行? 接收键盘命令并将其传给操作系统执行的程序(用于输入和管理命令的程序),统称命令行,也叫: Shell&#xff0c;几乎所有Linux发行版都提供了一个 Shell 程序,叫做: Bash (Bourne-Again Shell, 因为最初的 Shell 是由 Steve Bourne 编写的原始 Unix 程序, Again 表…

关于调试和开发中对文件写操作导致乱码问题

背景基于上文log机制重定向问题&#xff0c;将代码打印单独存放文件中出现双击文件&#xff0c;如下图现象所示(银河麒麟系统) 使用vim打开文件发现有许多/00的乱码。 怀疑是数据没有同步至硬盘导致的。 于是在每次输入到文件后加入fdatasync函数&#xff0c;部分代码如下&am…

TikTok与环保:短视频如何引领可持续生活方式?

在数字时代&#xff0c;社交媒体平台扮演着塑造文化和价值观的关键角色。而TikTok&#xff0c;作为一款全球短视频平台&#xff0c;不仅塑造着用户的娱乐方式&#xff0c;还在悄然地引领着可持续生活方式的潮流。本文将深入探讨TikTok与环保之间的关系&#xff0c;分析短视频如…

11-Kafka

1 Kafka Kafka是一个分布式流式数据平台&#xff0c;它具有三个关键特性 Message System: Pub-Sub消息系统Availability & Reliability&#xff1a;以容错及持久化的方式存储数据记录流Scalable & Real time 1.1 Kafka架构体系 Kafka系统中存在5个关键组件 Producer…

路由器介绍和命令操作

先来回顾一下上次的内容&#xff1a; ip地址就是由32位二进制数组 二进位数就是只有数字0和1组成 网络位&#xff1a;类似于区号&#xff0c;表示区域作用 主机位&#xff1a;类似于号码&#xff0c;表示区域中编号 网络名称&#xff1a;网络位不变&#xff0c;主机位全为0 …

基于Java SSM框架实现二手交易平台网站系统项目【项目源码+论文说明】

基于java的SSM框架实现二手交易平台网站系统演示 摘要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认…

易基因2023年度DNA甲基化研究项目文章精选

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 2023年&#xff0c;易基因参与的DNA甲基化研究成果层出不穷&#xff0c;小编选取其中5篇不同方向的论文与您一起来回顾。 01、易基因微量DNA甲基化测序助力中国科学家成功构建胚胎干细胞…

IDEA中Git的常用使用方式

IDEA中Git的常用使用方式 1.初次拉取远程仓库项目代码到本地2.初次提交本地项目代码到远程仓库新分支方式一&#xff1a;提交时把.git目录删除掉&#xff0c;不保留以往修改记录方式二&#xff1a;提交时不删除.git目录&#xff0c;保留以往修改记录 3.日常拉取、提交、推送代码…