“抓取再吸取的连续操作学习”研究工作发表于IEEE Trans. on Robotics:仿人手的柔性抓取,超人手的指背吸取!

长期以来,抓取一直被认为是机器人操作中一项重要而实际的任务。然而,实现对不同物体的稳健和有效的抓取具有挑战性,因为它涉及夹具设计、感知、控制和学习等。最近基于学习的方法在抓取各种新物体方面表现出优异的性能。然而,这些方法要么通常仅限于一种单一的抓取模式,要么需要更多的末端执行器来抓取各种物体。此外,末端手的设计和学习方法通常是单独开发的,这可能无法充分探索多模态抓取能力。

Hybrid Robotic Grasping With a Soft Multimodal Gripper and a Deep Multistage Learning Scheme | IEEE Journals & Magazine | IEEE Xplore

近期清华大学计算机系孙富春教授团队在IEEE Transactions on Robotics发表的工作,提出了多模式软体手,实现自主多级混合的机器人抓取。软抓手具有三种抓取模式(即包络、吸取和包络_然后_吸取),既可以处理不同形状的物体,也可以同时抓取多个物体。我们提出了一种与多模态夹持器相结合的新型混合抓取方法,以优化抓取动作的数量。我们评估了不同场景下的 DRL 框架(即,两种抓握类型的对象比例不同)。与单一抓取模式相比,所提出的算法被证明可以减少抓取动作的数量(即提高抓取效率,模拟中的最大值为 161.0%,真实世界实验中的最大值为 153.5%)。
在这里插入图片描述

一.抓手的设计

如图所示,这种夹持器设计成对称的,四个手指围绕垂直轴(重力方向)均匀分布,每个手指由软室、卡纸层、力传感器和吸盘组成[见 图 2(a)]。每个手指的弯曲都可以通过伺服驱动的肌腱拖动来实现。我们可以通过使用具有不同腿部角度的扭力弹簧来调整夹持器开口的限制尺寸。此外,安装在指尖背面的真空吸盘用于产生吸力。所有的空气通道都是独立的,尽管它们共享一个真空源,保证了稳定的吸力。此外,每个指尖都配备了一个压阻式压力传感器来获取接触力,还配备了一个姿态传感器来获取手指的姿势信息。这样的设计确保了精确的控制,并允许 SMG 以混合方式抓取多个异构对象。
在这里插入图片描述

我们通过参考 3-D 模型构建了 SMG 的原型,如图 2(d)-(f) 所示。我们使用两种类型的硅橡胶制造了手指的软致动器:较软的 Ecoflex 0050 和较硬的 Nasil 4230。我们使用柔性钓鱼线作为 U 形肌腱来驱动四个手指并实现不同模式的弯曲变形。此外,我们将由 18 层纸和弹簧钢片组成的卡纸层逐层堆叠在一起。然后,我们将它们塞入软室内,以实现有效的可变刚度,从而提高多模式抓取性能。增加腔室中的气压主要使手指变硬,而不会产生太大的弯曲变形。

二. 学习策略

抓取过程涉及物体检测、抓取选择和机器人(夹具)控制。由于 SMG 的可变结构和可变形特性,很难开发一个精确的模型来捕捉它的所有特征。此外,由于其高主动/被动自由度和约束,SMG 的规划和控制也并非微不足道。寻找一种策略来最小化抓取动作的数量本质上是一个顺序学习问题,其中 SMG 与不确定的抓取环境相互作用,其动作可能会影响未来的情况。因此,在这项工作中,我们使用强化学习来生成保证最佳抓取效率的多模态抓取动作。

如图所示:(a) Clor 和深度高度图是通过深度相机捕获的RGB-D 图像的投影变换生成的。高度图的边缘是根据机器人工作空间的边界预定义的。然后使用 Mask R-CNN 获得掩码。最后,我们得到深度掩码。(b) 三个深度 Q 网络将一个或两个对象的深度高度图(即局部属性)与所有对象的深度高度图(即全局属性)连接起来作为输入,并输出三个 Q 值矩阵。© 执行使 Q 值最大化的动作。对于包络动作,通过弯曲四指对目标对象进行包络抓取。对于吸取动作,一个吸盘对目标对象执行吸取。enveloping_then_sucking 动作是对两个目标对象分别和顺序执行的包络和吸取的组合。
在这里插入图片描述

三种抓取动作:包络、吸取和包络_然后_吸取。如图所示:(a) 夹具的包围和吸取姿势。为了包络目标物体,必须首先确定包络方向αe、包络旋转角度γe和夹持器张开距离d。然后进行预包络过程,包括绕 z 轴旋转角度 γe 和手指的弯曲位移以实现包络开口距离 d。最后,夹持器接近目标物体,进一步弯曲位移施加到手指以实现包围动作。对于吸取,必须首先导出吸取方位αs和吸取旋转角γs。然后执行预吸过程,包括手指的弯曲位移,然后绕z轴旋转角度γs,然后绕框架G的x轴旋转角度θs。最后,吸盘2 接近目标位置并执行吸取动作。 (b) 3D 抓取环境中三个动作中的每一个所涉及的过程。enveloping_then_sucking 动作是 enveloping 动作和 sucking 动作的组合。
在这里插入图片描述

三.结果

在本节中,我们使用一组实验评估 SMG 的性能以及我们提出的方法的有效性。首先,我们介绍训练数据集。其次,我们验证了我们的 SMG 的多模态抓取能力,并展示了我们的方法确保无碰撞抓取的能力。然后,我们训练我们的 DRL 算法并测试其适应基于模拟环境的多模态抓取的能力。最后,我们的混合抓取框架的准确性和效率在真实世界和模拟实验中得到了验证。通过混合抓取明显不同的物体来说明抓取效率,例如,更适合吸取的扁平物体和更适合包裹的圆形物体。

这些实验的目的阐明如下:

1)证明我们设计的软抓手在抓取不同种类的物体时具有良好的适应性和灵活性。

2)评估我们提出的算法的性能及其实现多模式自主抓取的能力。

3)研究两种物体的不同比例对抓取效率的影响,并验证我们的多模态抓取模式优于单一抓取模式。

  1. 用于训练和测试的数据集。我们的数据集涵盖 13 个对象类别,每个类别包含一个或多个子类型。模拟数据集是从一组 3-D 模拟模型生成的,这些模型随机分为训练集和测试集。我们使用模拟器 CoppeliaSim 为模拟中使用的每个子类型创建五种不同大小的对象。真实的数据集是从生活场景中收集的。
    在这里插入图片描述

  2. 多模态抓手的抓取演示。(a) 包络圆形物体。(b) 吸取平面物体。© Enveloping_then_sucking 两类对象。
    在这里插入图片描述

  3. 模拟和现实场景中四种情况的吸取方向优化。图像右上角的快照是每个状态的颜色高度图。包络和吸取的目标对象分别由红色和绿色矩形包围,它们是最小面积的边界框。
    在这里插入图片描述

  4. 训练表现。(a) 在培训步骤中掌握三种行动的效率。当系统选择正确的动作时,抓取效率显着提高(即,策略分别对适合包围和吸取的对象执行包围和吸取动作,并最大化完全成功的 enveloping_then_sucking 动作)。(b) 三种类型的动作在训练步骤的成功动作中的分布。enveloping_then_sucking 动作有两个成功标准(即拾取两个物体的完全成功动作和仅拾取一个物体的半成功动作)。完全成功的 enveloping_then_sucking 动作的比例在训练步骤中显着增加,有助于抓取效率的最大化。
    在这里插入图片描述

  5. 多模态抓取策略在模拟和真实测试中的表现。(a)–© 11 种不同比例的适合包封的物体的三种动作分布。每个比例对应一组包含 200 个动作并重复 3 次的实验。图 (d) 和 (e) 显示了三种动作在总实验中的分布,其中包含 11 组子实验(11 × 200 个动作)并重复 3 次。(f) 适合包封的不同比例物体的成功率和抓取效率。
    在这里插入图片描述

  6. 性能评估

为了评估我们训练的混合抓取模型的性能,我们在两种类型物体的不同比例的场景中测试了该方法,以测量抓取率和抓取效率。
在这里插入图片描述

五.总结

在这项工作中,我们开发了一个基于学习的机器人混合抓取框架,包括抓手设计、抓取建模、基于模拟的训练和模拟到真实的转移。我们的目标是尽量减少抓取动作的数量,以优化抓取效率。我们设计了一个包含四个手指的 SMG,每个指尖的背面都有一个真空杯。它具有多模态抓取能力,具有包覆、吸取和包覆再吸取三种抓取模式,使抓取器能够处理异质物体并同时抓取多个物体。所提出的混合抓取学习方法可以实现多阶段自主抓取,可用于充分探索 SMG 的能力。

我们在仿真环境使用 DRL 训练了我们的学习模型。我们在模拟和现实中测试了经过训练的模型。结果表明,三个执行动作的分布对工作空间中两类对象的比例敏感。执行的包裹和吸吮动作的数量分别与 Pe(即适合包裹和吸吮的物体比例)呈正相关和负相关。然而,enveloping_then_sucking 动作的执行次数只有在 Pe 接近 50% 时才会增加,并且在 Pe=50% 时达到最大值。我们的方法在模拟中获得了 93% 的平均成功率和 161% 的最大抓取效率,在真实机器人实验中达到了 88% 的平均成功率和 154% 的最大抓取效率。这表明我们的混合抓取模型优于传统的单一抓取模式方法,后者的抓取效率低于 100%。此外,我们的 DRL 策略能够处理新物体,并且可以可靠地从模拟转移到现实世界。该代码可在 https://github.com/fukangl/SMG-multimodal-grasping 获得。

未来的工作包括实施所提出的方法以在杂乱的环境中抓住指定的目标;例如,优化场景中的抓取动作,其中目标对象被具有不同特征的非目标对象包围并且不允许过头抓取。我们也有兴趣减小 SMG 的尺寸,以实现精细的操作和抓取任务,例如组装、表面处理和整形等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/267039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言用两个函数求最大公约数和最小公倍数

目录 1【c语言】(函数)写两个函数,分别求两个整数的最大公约数和最小公倍数。在主函数中输入两个数,分别调用这两个函数,并输出结果 2代码: 3运行代码: 4总结: 1【c语言】(函数)写两个函数,分别求两个整数的最大公约数和最小公倍数。在主函数中输入两…

C++初阶——类和对象

呀哈喽,我是结衣 C入门之后,我们就进入了C的初阶的学习了,在了解类和对象之前,我们还是先了解,面向过程和面向对象的初步认识。 在本篇博客中,我们要讲的内容有 1.面向过程和面向对象初步认识 2.类的引入 3…

浅析海博深造

文章目录 深造作用 留学种类 选专业 择校 申请流程 申请方式 深造作用 1、个人能力提升(学术专业、语言、新文化或新生活方式) 2、更好的职业发展(起点更高、结交新朋友或扩大社交圈) 3、北京上海落户优惠 4、海外居留福…

抖音小店无货源怎么做?全新玩法,全新的思路!

大家好,我是电商糖果 抖音小店已经不能拍单了,无货源模式是不是不能做了? 自从不能拍单的规则出来之后,问这个问题的朋友特别多。 糖果做无货源电商七年了,做过天猫,京东,闲鱼,20…

MySQL部署之yum安装

MySQL https://www.mysql.com //mysql官网 yum安装步骤 yum安装 清理环境 [rootmysql ~]# yum erase mariadb mariadb-server mariadb-libs mariadb-devel -yuserdel -r mysql[rootmysql ~]# rm -rf /etc/my* && rm -rf /var/lib/mysql && rm -rf /use/bin/m…

HarmonyOS的装饰器之BuilderParam 理解

BuilderParam 装饰器 使用时间:当定义了一个子组件,并且子组件的build()中有一个布局在不同的父组件,实现效果不一样的时候,可以在子组件中用这个BuilderParam装饰器, 在父组件用Builder 装饰器进行实现,然…

Linux操作系统基础(一)系统和软件的安装

Linux操作系统简介 Linux是一种自由和开放源码的类Unix操作系统。该操作系统的内核由芬兰人林纳斯托瓦兹在1991年10月5日首次发布,再加上用户空间的应用程序之后,就成为了Linux操作系统。Linux也是自由软件和开放源代码软件发展中最著名的例子。 Linux…

【12.23】转行小白历险记-算法02

不会算法的小白不是好小白,可恶还有什么可以难倒我这个美女的,不做花瓶第二天! 一、螺旋矩阵 59. 螺旋矩阵 II - 力扣(LeetCode) 1.核心思路:确定循环的路线,左闭右开循环,思路简…

RK3588-TVM-GPU推理模型

1.前言 之前的博客已经在RK3588上安装了tvm的mali-gpu的版本,我们整理一下思路,本文将从模型的转换和调用两个方面进行讲解,tvm使用的是0.10版本,模型和代码也都是tvm官方的案例。 2.onnx模型转换 将ONNX格式的ResNet50-v2模型转…

基于协同过滤的电影评论数据分析与推荐系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目介绍 随着社会的发展,人们生活水平的提高,欣赏电影逐渐成为人们闲暇时的主要娱乐方式之一。本文电影推荐系统是为了给顾客提供方便快捷的热门电影推荐以及查询电影资讯而建立的&…

CSB文件上传漏洞 -->Day4(图片挂马)

22二号,冬至啦,深圳这边只有5(尊嘟好冷啊),写这篇文章的时候都已经是凌晨一点了,相信大部分的人都在温暖的被窝里面了吧!!(可怜的我,还得写writeup&#xff0…

JSP打印直角三角形

代码&#xff1a; <%page language"java" contentType"text/html;charsetutf-8"%> <html> <head><title>expressionDemo</title> </head> <body> <h1>以直角三角形的形式输出数字</h1> <table&…

Hadoop入门学习笔记——二、在虚拟机里部署HDFS集群

视频课程地址&#xff1a;https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接&#xff1a;https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记&#xff08;汇总&#xff09; 目录 二、在虚拟机里部署HDFS集群2.1. 部署node1虚拟机2.2. 部…

如何在更新 Windows 11 后恢复误删除的文件

在本分步指南中&#xff0c;您将找到在 Windows 11 更新后恢复已删除文件的有用提示和方法。了解数据丢失的原因&#xff1a; 最新版本的 Windows 11 一直是热门话题之一&#xff0c;微软以突破性的方式重新推出了他们的操作系统。 从优雅的界面到严格的安全管理&#xff0c;…

敏捷时代的架构

在敏捷时代&#xff0c;架构如何适应敏捷原则&#xff0c;架构师如何以敏捷的方式与各个团队合作&#xff0c;本文希望能够给出这些问题的答案。原文: Architecture in the Age of Agile 前言 在快节奏的软件开发领域&#xff0c;架构和敏捷这两个看似截然不同的概念碰撞在一起…

Java设计模式-适配器模式

目录 一、生活中的适配器例子 二、基本介绍 三、工作原理 四、类适配器模式 &#xff08;一&#xff09;类适配器模式介绍 &#xff08;二&#xff09;应用实例 &#xff08;三&#xff09;类适配器模式注意事项和细节 五、对象适配器模式 &#xff08;一&#xff09…

【架构】ServerLess

文章目录 概述什么是serverless无服务与传统模式架构区别serverless优缺点使用serverless的应用场景有哪些“无服务器”搭建网站Serverless的落地案例来源 概述 架构 单体&#xff08;三层架构&#xff09;微服务分布式ServerLess 什么是serverless无服务 serverless中文的…

鸿蒙开发语言介绍--ArkTS

1.编程语言介绍 ArkTS是HarmonyOS主力应用开发语言。它在TypeScript (简称TS)的基础上&#xff0c;匹配ArkUI框架&#xff0c;扩展了声明式UI、状态管理等相应的能力&#xff0c;让开发者以更简洁、更自然的方式开发跨端应用。 2.TypeScript简介 自行补充TypeScript知识吧。h…

深入理解Python的logging模块:从基础到高级

在Python编程中&#xff0c;日志记录是一种重要的调试和错误追踪工具。Python的logging模块提供了一种灵活的框架&#xff0c;用于发出日志消息&#xff0c;这些消息可以被发送到各种输出源&#xff0c;如控制台、文件、HTTP GET/POST位置等。本文将深入探讨Python的logging模块…