mac m1芯片 pytorch安装及gpu性能测试

pytorch 使用mac的m1芯片进行模型训练。

#小结:在数据量小模型参数少,batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长)
数据量大(或者batch size大)或者模型参数多时,使用GPU训练优势明显
当模型参数大于100时,使用GPU比CPU开始有优势
注意mac gpu device是 mps ,不是cudn. device= torch.device(“mps”)

1 pytorch 安装及gpu验证

1.1 安装

mac需要安装 night 版本的pytorch
mac安装官网地址

conda install pytorch torchvision torchaudio -c pytorch-nightly
# 或者
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

1.2 gpu验证

主要是执行:torch.backends.mps.is_available()
以下代码输出: tensor([1.], device=‘mps:0’)

import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

2 mac m1芯片验证

实验1 :batch_size=32, 模型参数 parameter_num=476,720
  gpu 运行时长: 1min 36s
  cpu 运行时长: 37.5s
实验2 :batch_size=512, 模型参数 parameter_num=476,720
  gpu 运行时长: 16s
  cpu 运行时长: 13.3s
实验3 :batch_size=1024, 模型参数 parameter_num=476,720
  gpu 运行时长: 12.7s
  cpu 运行时长: 12.4s
实验4 :batch_size=1024, 模型参数 parameter_num=6,904,128
  gpu 运行时长: 13.9s
  cpu 运行时长: 23.8s
实验5 :batch_size=1024, 模型参数 parameter_num=23,685,440
  gpu 运行时长: 20.5s
  cpu 运行时长: 53.5s
实验6 :batch_size=1024, 模型参数 parameter_num=203,618,624
  gpu 运行时长: 4min 11s
  cpu 运行时长: 6min 49s

附录

测试代码

import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
from  torch import nn,optim
batch_size=1024
mnist_train=datasets.MNIST("mnist",True,transform=transforms.Compose([
    transforms.ToTensor()    ]),download=True)
mnist_train=DataLoader(mnist_train,batch_size=batch_size,shuffle=True)
minst_test=datasets.MNIST("mnist",False,transform=transforms.Compose([
    transforms.ToTensor()  ]),download=True)
minst_test=DataLoader(minst_test,batch_size=batch_size,shuffle=True)
x,lable=next(iter(mnist_train))
print(lable)
x.shape

device=torch.device("mps")
autoencoder=AE().to(device)
critenon=nn.MSELoss()
optimizer=optim.Adam(autoencoder.parameters(),lr=1e-4)

autoencoder2=AE()
critenon2=nn.MSELoss()
optimizer2=optim.Adam(autoencoder2.parameters(),lr=1e-4)

# GPU 训练
#%%time
for epoch in range(5):
    for index,(x,_) in enumerate(mnist_train):
        x=x.to(device)
        x_hat=autoencoder(x)
        loss=critenon(x_hat,x)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(epoch,"loss: ",loss.item())
    
# CPU训练
# %%time
for epoch in range(5):
    for index,(x,_) in enumerate(mnist_train):
        x=x
        x_hat=autoencoder2(x)
        loss=critenon2(x_hat,x)
        optimizer2.zero_grad()
        loss.backward()
        optimizer2.step()
    print(epoch,"loss: ",loss.item())

total_params = sum(p.numel() for p in autoencoder2.parameters())
print("Total Parameters: {:,}".format(total_params))

实验1
在这里插入图片描述

实验3
在这里插入图片描述

实验4

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/266904.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringIOC之AbstractMessageSource

博主介绍:✌全网粉丝5W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…

K8S 外部访问配置、 Ingress、NodePort

将K8S部署应用提供给外部访问一般有三种方式: NodePort 暴露端口到节点,提供了集群外部访问的入口LoadBalancer 需要负载均衡器(通常都需要云服务商提供,裸机可以安装 METALLB 测试)Ingress 统一管理 svc的外部访…

Bloom过滤器

Bloom过滤器 一、概述二、原理三、优缺点1. 优点2.缺点 四、Bloom过滤器在比特币中的应用五、项目应用步骤1. pom.xml引入依赖2. 样例代码 六、Java版简易实现 一、概述 Bloom过滤器是一个允许用户描述特定的关键词组合而不必精确表述的基于概率的过滤方法。它能让用户在有效搜…

详解Vue3中的内置组件(transition)

本文主要介绍Vue3中的内置组件(transition)的普通写法和setup写法。 目录 一、在普通写法中使用内置组件(transition)二、在setup写法中使用内置组件(transition)三、使用注意项 在Vue3中,内置了…

Linux poll 和 select 机制

poll select 介绍 使用非阻塞 I/O 的应用程序常常使用 poll, select, 和 epoll 系统调用. poll, select 和 epoll 本质上有相同的功能: 每个允许一个进程来决定它是否可读或者写一个 或多个文件而不阻塞. 这些调用也可阻塞进程直到任何一个给定集合的文件描述符可用来 读或写.…

Nessus详细安装-windows (保姆级教程)

Nessus描述 Nessus 是一款广泛使用的网络漏洞扫描工具。它由 Tenable Network Security 公司开发,旨在帮助组织评估其计算机系统和网络的安全性。 Nessus 可以执行自动化的漏洞扫描,通过扫描目标系统、识别和评估可能存在的安全漏洞和弱点。它可以检测…

使用 Spring Boot + MyBatis开发需要注意的事项以及开发模版

前言: 注意,本篇不适用于有相关开发经验的开发者,作为一个在职开发者,我经常在完成从0-1的模块,也就是从数据库表开始到创建实体类,以及dao层,Service层等业务需要添加相关注解,这样…

使用office打开word文档时候提示错误:0x426-0x0的解决方案

在使用office打开word文档时候提示错误:0x426-0x0。如下图: 昨天还用的好好的,怎么今天就不行了?为什么呢? 更多工作中遇到问题见:凯哥BK 这个错误导致office无法启动通常是由于office软件所依赖的服务无…

vue的表单收集案例

Vue的表单收集案例 这只是最基础的表单收集&#xff0c;并未涉及到element-ui。 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>收集表单数据</title><script type"text/javascript" src"../js…

Hago 的 Spark on ACK 实践

作者&#xff1a;华相 Hago 于 2018 年 4 月上线&#xff0c;是欢聚集团旗下的一款多人互动社交明星产品。Hago 融合优质的匹配能力和多样化的垂类场景&#xff0c;提供互动游戏、多人语音、视频直播、 3D 虚拟形象互动等多种社交玩法&#xff0c;致力于为用户打造高效、多样、…

物理模拟重力 斜抛运动计算 抛物线计算

物理模拟重力 斜抛运动计算 抛物线计算 一、介绍二、原理三、实现如下PhysicsUtil.cs 工具类Missile.cs 四、资源分享 一、介绍 模拟Unity原始重力系统进行重写&#xff0c;可是实现发射到指定目标位置并能继续当前力进行自身的弹力与摩擦继续运动 二、原理 将Unity原始不受控…

word2003 open word2007+

Win 7 C:\Documents and Settings\Administrator\Application Data\Microsoft\Templates 还是不行&#xff0c;重装office2003吧&#xff0c;再安装转换插件&#xff0c;但是再高版本好像没转换工具

【Linux】进程管理

ps&#xff1a;报告当前进程快照。top&#xff1a;显示任务。kill&#xff1a;给一个进程发送信号。shutdown&#xff1a;关机或重启系统。 一个程序可以发动另一个程序被表述为一个父进程可以产生一个子进程&#xff0c;内核维护每个进程的信息&#xff0c;以此来保持事情有序…

【新版】软考 - 系统架构设计师(总结笔记)

个人总结学习笔记&#xff0c;仅供参考&#xff01;&#xff01;&#xff01;! →点击 笔者主页&#xff0c;欢迎关注哦&#xff08;互相学习&#xff0c;共同成长&#xff09; 笔记目录 &#x1f4e2;【系统架构设计系列】系统架构设计专业技能 计算机组成与结构操作系统信…

如何快速实现地源热泵远程监控

地源热泵远程监控解决方案 一、项目背景 山东省潍坊市盛世花园小区地源热泵项目是一个先进的供暖与制冷系统&#xff0c;旨在为整个小区提供高效且节能的温控服务。该系统主要由地下管道网络、地源热泵单元以及室内分配系统组成。 针对现有的地源热泵系统的管理和监控问题&a…

1162字符串逆序

一&#xff1a;题目 二.思路分析 1.如果不用递归&#xff0c;可以输入字符串后&#xff0c;再逆序输出&#xff0c;但是题目要求使用递归 2.使用递归&#xff1a; 2.1输入字符&#xff0c;直到输入的字符是‘&#xff01;’&#xff0c;停止输入&#xff0c;否则继续输入&…

Redis数据一致解决方案

文章目录 前言技术积累查询缓存业务流程更新缓存业务流程 更新缓存问题解决方案写在最后 前言 当前的应用服务很多都有着高并发的业务场景&#xff0c;对于高并发的解决方案一般会用到缓存来降低数据库压力&#xff0c;并且还能够提高系统性能减少请求耗时&#xff0c;比如我们…

AndroidStudio无法新建Java工程解决办法

我用的 AS 版本是 Android Studio Giraffe | 2022.3.1 Build #AI-223.8836.35.2231.10406996, built on June 29, 2023 以往新建工程都是 New project >> Empty Activity &#xff0c; 有个选择 Java 还是 Kotlin 语言的选项&#xff0c; 之后会默认生成一个 MainActi…

系列三、安装RocketMQ(单机版)

一、安装RocketMQ&#xff08;单机版&#xff09; 1.1、前置准备 通过前面系列一、MQ简介、系列二、RocketMQ简介的文章我们知道RocketMQ是用Java语言编写的&#xff0c;所以在安装RocketMQ之前&#xff0c;需要保证Linux中的JDK是已经安装好了的&#xff0c;要不然无法安装&a…

java流浪动物保护系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web 流浪动物保护系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql…