图解LRU缓存

图解LRU缓存

OJ链接

介绍

LRU 缓存机制可以通过哈希表辅以双向链表实现,我们用一个哈希表和一个双向链表维护所有在缓存中的键值对。

  • 双向链表按照被使用的顺序存储了这些键值对,靠近尾部的键值对是最近使用的,而靠近头部的键值对是最久未使用的。

  • 哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。

这样一来,我们首先使用哈希表进行定位,找出缓存项在双向链表中的位置,随后将其移动到双向链表的尾部,即可在O(1)的时间内完成 get 或者 put 操作。

在这里插入图片描述

先介绍两个常用函数:removeToTail(node)和add(node),removeToTail(node)是在双向链表中,将使用过的node移到链表尾部,add(node)是往双向链表增加一个节点。

removeToTail(node)

在这里插入图片描述

add(node)

在这里插入图片描述

下面就是主要函数的介绍

get()

对于 get 操作,首先判断 key 是否存在:

  • 如果 key 不存在,则返回 −1;

  • 如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的尾部,最后返回该节点的值。

put()

对于 put 操作,首先判断 key 是否存在:

  • 如果 key 不存在,使用 key 和 value 创建一个新的节点,将 key 和该节点添加进哈希表中,并在双向链表的尾部添加该节点。然后判断哈希表的节点数是否超出容量,如果超出容量,则删除哈希表中对应的项,并删除双向链表的头部节点;

  • 如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将该节点移到双向链表的尾部,并将对应的节点的值更新为 value。

复杂度分析

上述各项操作中,访问哈希表的时间复杂度为 O(1),在双向链表的尾部添加节点、在双向链表的头部删除节点的复杂度也为 O(1)。

代码
import java.util.HashMap;

public class $146 {
    class Node {
        int key;
        int value;
        Node prev;
        Node next;

        public Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    HashMap<Integer, Node> hashMap = new HashMap<>();
    Node head = null;
    Node tail = null;
    int capacity;

    public $146(int capacity) {
        this.capacity = capacity;
    }

    //双向链表,将节点移动到tail后面,表示该节点是最近使用的
    public void removeToTail(Node node) {
        if (node == tail) {

        } else if (node == head) {
            tail.next = node;
            node.prev = tail;
            tail = tail.next;
            head = head.next;
        } else {
            node.prev.next = node.next;
            node.next.prev = node.prev;

            tail.next = node;
            node.prev = tail;
            tail = tail.next;
        }
    }

    //双向链表,增加某节点
    public void add(Node node) {
        if (tail == null) {
            head = node;
            tail = node;
        } else {
            tail.next = node;
            node.prev = tail;
            tail = tail.next;
        }
    }


    public int get(int key) {
        //1.哈希表不存在key,返回-1
        if (!hashMap.containsKey(key)) {
            return -1;
        } else { //2.哈希表存在key,从哈希表中获得value,将key移到链表尾部
            int res = hashMap.get(key).value;
            removeToTail(hashMap.get(key));
            return res;
        }
    }

    public void put(int key, int value) {
        //1.哈希表不存在key
        if (!hashMap.containsKey(key)) {
            //1.1创建新节点
            Node node = new Node(key, value);
            //1.2插入
            //插入到哈希表
            hashMap.put(key, node);
            //插入到链表
            add(node);

            //1.3判断哈希表容量
            if (hashMap.size() > capacity) {
                //1.3.1删除
                //哈希表删除链表头元素
                hashMap.remove(head.key);
                //链表删除头元素
                // remove(head);
                head = head.next;
            }
        } else { //2.哈希表存在key
            //2.1更新
            //更新链表,将key移到链表尾部
            removeToTail(hashMap.get(key));
            //更新哈希表,key对应的value
            hashMap.get(key).value = value;
        }
    }

    public static void main(String[] args) {
        $146 a = new $146(4);
        a.put(8,80);
        a.put(9,90);
        a.put(7,70);
        a.put(6,60);
        a.get(8);
        a.get(7);
        a.put(5,50);
    }

//    //双向链表,删除某节点
//    public void remove(Node node) {
//        // head = head.next;
//        if (node == tail) {
//            tail = tail.prev;
//        } else if (node == head) { //均是头结点
//            head = head.next;
//        } else {
//            node.prev.next = node.next;
//            node.next.prev = node.prev;
//        }
//    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/266474.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

论文润色的原理是什么 PaperBERT

大家好&#xff0c;今天来聊聊论文润色的原理是什么&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff0c;可以借助此类工具&#xff1a; 标题&#xff1a;论文润色的原理――探究论文润色背后的科学依据 一、…

nodejs+vue+ElementUi洗衣店订单管理系统4691l

衣服但是找订单的时间太长&#xff0c;体验非常的差。而且对于店家这也很头疼&#xff0c;麻烦的查找订单的方式&#xff0c;让他总是重复着繁琐的步骤&#xff0c;记录的时候也很容易出问题&#xff0c;容易把衣服弄错&#xff0c;再然后就是对于收来的衣服也很麻烦&#xff0…

HarmonyOS构建第一个ArkTS应用(FA模型)

构建第一个ArkTS应用&#xff08;FA模型&#xff09; 创建ArkTS工程 若首次打开DevEco Studio&#xff0c;请点击Create Project创建工程。如果已经打开了一个工程&#xff0c;请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发&a…

P4 音频知识点——PCM音频原始数据

目录 前言 01 PCM音频原始数据 1.1 频率 1.2 振幅&#xff1a; 1.3 比特率 1.4 采样 1.5 量化 1.6 编码 02. PCM数据有以下重要的参数&#xff1a; 采样率&#xff1a; 采集深度 通道数 ​​​​​​​ PCM比特率 ​​​​​​​ PCM文件大小计算&#xff1a; ​…

如何利用PPT绘图并导出清晰图片

在写论文的过程中&#xff0c;免不了需要绘图&#xff0c;但是visio等软件绘图没有在ppt上绘图比较熟练&#xff0c;尤其流程图结构图. 但是ppt导出的图片也不够清晰&#xff0c;默认分辨率是96dpi&#xff0c;而杂志投稿一般要求至300dpi。解决办法如下&#xff1a; 1.打开注…

神经网络:机器学习基础

【一】什么是模型的偏差和方差&#xff1f; 误差&#xff08;Error&#xff09; 偏差&#xff08;Bias&#xff09; 方差&#xff08;Variance&#xff09; 噪声&#xff08;Noise&#xff09;&#xff0c;一般地&#xff0c;我们把机器学习模型的预测输出与样本的真实label…

Python自动化办公,又双叒增加功能了!

大家好,这里是程序员晚枫,今天给大家分享一下Python自动化办公,最近更新的功能。 以下代码,全部都可以免费使用哦~! 彩色的输出 有没有觉得python自带的无色输出看腻了?增加了彩色输出的功能,可以实现无痛替换。 上面效果的实现代码如下,👇 自动收发邮件 这个12月发…

采用SpringBoot框架+原生HTML、JS前后端分离模式开发和部署的电子病历编辑器源码(电子病历评级4级)

概述&#xff1a; 电子病历是指医务人员在医疗活动过程中,使用医疗机构信息系统生成的文字、符号、图表、图形、数据、影像等数字化信息,并能实现存储、管理、传输和重现的医疗记录,是病历的一种记录形式。 医院通过电子病历以电子化方式记录患者就诊的信息&#xff0c;包括&…

Flink 数据序列化

为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火&#xff0c;大多数技术组件都是运行在JVM上的&#xff0c;Flink也是运行在JVM上&#xff0c;基于JVM的数据分析引擎都需要将大量的数据存储在内存中&#xff0c;这就不得不面临JVM的一些问题&#xff0c;比如Ja…

第4章 | 安徽某高校《统计建模与R软件》期末复习

第4章 参数估计 参数估计是统计建模的关键步骤之一&#xff0c;它涉及根据样本数据推断总体参数的过程。在统计学中&#xff0c;参数通常用于描述总体的特征&#xff0c;如均值、方差等。通过参数估计&#xff0c;我们可以利用样本信息对这些未知参数进行推断&#xff0c;从而…

kubernetes集群 应用实践 kafka部署

kubernetes集群 应用实践 kafka部署 零.1、环境说明 零.2、kafka架构说明 zookeeper在kafka集群中的作用 一、Broker注册 二、Topic注册 三、Topic Partition选主 四、生产者负载均衡 五、消费者负载均衡 一、持久化存储资源准备 1.1 创建共享目录 [rootnfsserver ~]# mkdir -…

深度学习 | 基础卷积神经网络

卷积神经网络是人脸识别、自动驾驶汽车等大多数计算机视觉应用的支柱。可以认为是一种特殊的神经网络架构&#xff0c;其中基本的矩阵乘法运算被卷积运算取代&#xff0c;专门处理具有网格状拓扑结构的数据。 1、全连接层的问题 1.1、全连接层的问题 “全连接层”的特点是每个…

用C的递归函数求n!-----(C每日一编程)

用递归函数求n&#xff01; 有了上面这个递归公式就能写C代码了。 参考代码&#xff1a; int fac(int n) {if (n 1 || n 0)return 1;else return n * fac(n - 1); } void main() {int n;scanf("%d",&n);int f fac(n);printf("\n%d!%d\n", n, f); …

linux设置线程优先级以及调度策略浅析

linux线程调度策略 Linux内核会根据线程的优先级和调度策略来分配处理器时间。线程的优先级越高&#xff0c;它在竞争处理器时间时就越有可能被选中执行。调度策略定义了内核在选择下一个要执行的线程时所遵循的规则。 在Linux中&#xff0c;有以下几种常见的调度策略&#x…

【iOS】UICollectionView

文章目录 前言一、实现简单九宫格布局二、UICollectionView中的常用方法和属性1.UICollectionViewFlowLayout相关属性2.UICollectionView相关属性 三、协议和代理方法&#xff1a;四、九宫格式的布局进行升级五、实现瀑布流布局实现思路实现原理代码调用顺序实现步骤实现效果 总…

ospf学习纪要

1、为避免区域&#xff08;area0,area1等&#xff09;间的路由形成环路&#xff0c;非骨干区域之间不允许直接相互发布区域间的路由。因此&#xff0c;所有的ABR&#xff08;Area Border Router,区域边界路由器&#xff09;都至少有一个借口属于Area0,所以Area0始终包含所有的A…

深度学习第6天:ResNet深度残差网络

☁️主页 Nowl &#x1f525;专栏 《深度学习》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 ​​ 文章目录 什么是ResNet模型结构整体架构残差块 模型特性示例代码 什么是ResNet ResNet是一种用于图像识别的深度残差网络&#xff0c;是卷积神经网络的一种重要模型&…

哈希拓展攻击CTF题做法

目录 基础&#xff1a; 盐&#xff08;Salt&#xff09;&#xff1a; 哈希长度拓展攻击&#xff1a; kali下载相关工具hash-ext-attack&#xff1a; hash拓展题目特征&#xff1a; 哈希拓展ctf题&#xff1a; 2023楚慧杯upload_shell 实验吧之让我进去&#xff1a; 前言…

【量化金融】证券投资学

韭菜的自我修养 第一章&#xff1a; 基本框架和概念1.1 大盘底部形成的技术条件1.2 牛市与熊市1.3 交易系统1.3.1 树懒型交易系统1.3.2 止损止损的4个技术 第二章&#xff1a;证券家族4兄弟2.1 债券&#xff08;1&#xff09;债券&#xff0c;是伟大的创新&#xff08;2&#x…

Kafka日志

位置 server.properties配置文件中通过log.dir指定日志存储目录 log.dir/{topic}-{partition} 核心文件 .log 存储消息的日志文件&#xff0c;固定大小为1G&#xff0c;写满后会新增一个文件&#xff0c;文件名表示当前日志文件记录的第一条消息的偏移量。 .index 以偏移…