limma:单通道数据和RNA-seq数据差异性分析标准方法

前言

单通道数据极为流行,三大公司:Affymetrix、Illumina和Agilent的微阵列(microarray)技术产生的很多都是单通道数据。现在的主力的高通量测序机所产生的也是单通道数据,所以只要是被voom标准化(包括了log转化)的RNA-seq数据都可以看作和microarray一样的数据[引用]。这是一个很重要很有用的概念,相信会帮到很多生物信息入门者:

RNA-seq data + voom标准化 = microarray data

分析单通道数据其实是最好理解的,和普通的线性回归或者方差分析几乎是一样的。与微阵列数据不同的是,单通道数据通常需要依赖对比,缺少内参,所以R中设计程序的适合没几个标准参数可以用。这一篇文章中,我们仅仅使用最简单的两组对比设计的示例来做最简单的差异性分析。

示例

示例中的样本一共有两组共8个,前4个为正常组织,后4个为肿瘤组织。我们假设我们的表达举证为counts,counts应该长这样:

我们需要对这个矩阵进行voom转化,voom就是把 counts 转化为 log2-cpm的过程。

Voom

我们把下列的代码保存,并起名字为voom:

# assume counts is your Expression matrix
#Once a matrix of read counts counts has been created, with rows for genes and columns for samples,
#it is convenient to create a DGEList object using the edgeR package:

dge <- DGEList(counts=counts)

#The next step is to remove rows that consistently have zero or very low counts. One can for
#example use

keep <- filterByExpr(dge, design)
dge <- dge[keep,,keep.lib.sizes=FALSE]

# It is usual to apply scale normalization to RNA-seq read counts, and the TMM  normalization
#method in particular has been found to perform well in comparative studies. This can be applied
# to the DGEList object:
dge <- calcNormFactors(dge)



# voom 任选一种:
# 普通:
v <- voom(dge, design, plot=TRUE)
# 直接使用counts数据进行voom
# It is also possible to give a matrix of counts directly to voom without TMM normalization, by
v <- voom(counts, design, plot=TRUE)
# 如果你觉得原始数据噪声很大,也可以
#If the data are very noisy, one can apply the same between-array normalization methods as would
#be used for microarrays, for example:
v <- voom(counts, design, plot=TRUE, normalize="quantile")

设置分组

接下来就是设计矩阵了,根据要不要"对比矩阵",我们得到type分配了分组(处理):

type <- c("normal","normal","normal","normal","tumor","tumor","tumor","tumor")

设计矩阵分两种情况讨论

第一种:不要设计矩阵

# Here the first coefficient estimates the mean log-expression for wild type mice and plays the role
# of an intercept. 

Group <- factor(type, levels=c("normal","tumor"))
design <- model.matrix(~Group)
colnames(design) <- c("normal","tumorvsnormal")
design

source("voom")

fit <- lmFit(v, design)
fit <- eBayes(fit)
topTable(fit, coef="tumorvsnormal", adjust="BH")

 第二种:要设计矩阵


#第二种设计
#The second coefficient estimates the difference between mutant and wild type.
#Differentially expressed genes can be found by

design <- model.matrix(~0+type)
colnames(design) <- c("normal","tumor")

source("voom")

fit <- lmFit(v, design)
cont.matrix <- makeContrasts(tumorvsnormal=tumor-normal, levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
topTable(fit2, adjust="BH")

结果

我们看一下结果:

我们来看结果

你会发现结果是一样的,以上是针对单通道数据和voom标化 RNA-seq数据而言的二组对比,也是最常用的差异性分析方法,分享给大家。 

引用

Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/266407.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【操作系统】学习操作系统知识

文章目录 前言测量系统调用和上下文切换的成本purify 和 valgrindxx3 的执行过程 前言 ref&#xff1a;http://ges.cs.wisc.edu/~remzi/OSTEP/Chinese 零散的记录知识&#xff0c;看《操作系统引论》 测量系统调用和上下文切换的成本 上下文切换需要多长时间&#xff1f;甚…

SpringBoot+SSM项目实战 苍穹外卖(7)(Spring Cache)

继续上一节的内容&#xff0c;本节实现缓存菜品、缓存套餐、添加购物车、查看购物车和清空购物车功能。 目录 缓存菜品缓存套餐(基于Spring Cache)EnableCaching、Cacheable、CachePut和CacheEvictSpring Cache实现缓存套餐 添加购物车查看购物车清空购物车 缓存菜品 用户端小…

STANFORD斯坦福FS725铷钟

FS725在一个紧凑的半宽2U机箱中集成了一个铷原子振荡器&#xff08;SRS型号PRS10&#xff09;、一个低噪声通用交流电源和分配放大器。它提供稳定和可靠的性能&#xff0c;估计20年的老化率低于510-9&#xff0c;并证明铷原子振荡器的MTBF超过20万小时。FS725是校准和研发实验室…

@z-utils组 重构和自动化实现

highlight: monokai theme: github 包简介 z-utils组 是一个可以在vue/react/pure js 中使用的工具包&#xff0c;它包含三个子类&#xff0c;分别为 z-utils/base, z-utils/react, z-utils/vue 三个分别在不同区域使用。 他是原 zzy-javascript-devtools 的重构版本&#xf…

Java多线程技术四——定时器

1 定时器的使用 在JDK库中Timer类主要负责计划任务的功能&#xff0c;也就是在指定的时间开始执行某一个任务&#xff0c;Timer类的方法列表如下&#xff1a; Timer类的主要作用就是设置计划任务&#xff0c;封装任务的类却是TimerTask&#xff0c;该类的结构如下图 因为TimerT…

计算机网络复习-OSI TCP/IP 物理层

我膨胀了&#xff0c;挂我啊~ 作者简介&#xff1a; 每年都吐槽吉师网安奇怪的课程安排、全校正经学网络安全不超20人情景以及割韭菜企业合作的FW&#xff0c;今年是第一年。。 TCP/IP模型 先做两道题&#xff1a; TCP/IP协议模型由高层到低层分为哪几层&#xff1a; 这题…

Angular 11到升级到 Angular 16

日新月异&#xff0c;与时俱进… 随着Angular版本不断更新&#xff0c;再看所开发的项目版本仍然是Angular 11&#xff0c;于是准备升级 截止发博日最版本是 v17.1.0&#xff0c;考虑到稳定性因素决定升级到v16版本 一&#xff1a;查看 升级指南 二&#xff1a;按照指南&…

【ArduinoOTA无线(OTA)更新的EASY指南】

【ArduinoOTA无线&#xff08;OTA&#xff09;更新的EASY指南】 1. 前言2. 了解 ESP32 的 ArduinoOTA3. 无线更新案例4. ArduinoOTA入门5. 安装必备组件6. 设置硬件7. ESP32 OTA 的最低代码8. 按照我们的流程学习Arduino编程➜9. 这对OTA来说非常重要10. 通过无线方式将草图上传…

IIS服务器的配置与管理

1) 安装IIS服务器&#xff0c;并添加站点&#xff0c;该服务器的IP地址为192.168.1.xx 。 2) 配置网站&#xff0c;并设置该站点不允许匿名访问&#xff0c;仅允许使用自己的本地用户登录连接。 3) 配置网站&#xff0c;限制拒绝192.168.1.100IP地址访问 。 4) 客户端使用19…

【C++11特性篇】玩转C++11中的包装器(function&bind)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.为什么需要包装器function&#xff…

一篇文章带你搞定CTFMice基本操作

CTF比赛是在最短时间内拿到最多的flag&#xff0c;mice必须要有人做&#xff0c;或者一支战队必须留出一块时间专门写一些mice&#xff0c;web&#xff0c;pwn最后的一两道基本都会有难度&#xff0c;这时候就看mice的解题速度了&#xff01; 说实话&#xff0c;这是很大一块&…

【ubuntu 22.04】安装vscode并配置正常访问应用商店

注意&#xff1a;要去vscode官网下载deb安装包&#xff0c;在软件商店下载的版本不支持输入中文 在ubuntu下用火狐浏览器无法访问vscode官网&#xff0c;此时可以手动进行DNS解析&#xff0c;打开DNS在线查询工具&#xff0c;解析以下主机地址&#xff08;复制最后一个IP地址&a…

c++动态内存与智能指针

前言 静态内存&#xff1a;用于保存局部静态变量、类内的静态数据成员以及全局变量栈&#xff1a;用于保存函数内部的非static变量堆&#xff1a;存储动态分配的对象&#xff08;程序运行时分配的对象&#xff09; 静态内存和栈内存的对象由编译器自动创建和销毁 而堆区的动态…

​ 全球云科技基础设施:亚马逊云科技的海外服务器网络如何演进

在当今数字化浪潮愈发汹涌的时代&#xff0c;科技公司的发展不仅需要更强大的计算能力和创新性技术&#xff0c;还需要对环境的高度责任感。在这一背景下&#xff0c;亚马逊云科技的海外服务器产品成为了推动清洁、高效数字未来的领导者之一。亚马逊云科技的高级主管阿比谢克夏…

2024年开通抖店,相关注意事项,新手一定要注意这几个细节

我是王路飞。 马上2024年了&#xff0c;如果你在23年没开通抖店的话&#xff0c;那么2024年就一定不能再错过了。 今天给你们说下&#xff0c;在2024年开通抖店&#xff0c;新手需要注意的相关事项和细节。 内容来源于【醒醒团队-电商王路飞】 首先&#xff0c;开店的时候&a…

Unity中Shader观察空间推导(在Shader中实现)

文章目录 前言一、观察空间矩阵推导1、求观察空间基向量2、求观察空间的基向量在世界空间中的矩阵 的 逆矩阵2、求平移变换矩阵3、相乘得出 观察空间转化矩阵4、得到顶点的世界空间坐标&#xff0c;然后转化到观察空间5、把观察空间坐标转化为齐次裁剪坐标输出到屏幕 二、最终效…

测试开发体系介绍——测试体系介绍-L3

目录&#xff1a; 测试框架体系TDDDDTBDDATDD介绍 测试框架是什么&#xff1f;测试框架的价值&#xff1a;测试框架的收益&#xff1a;常见测试框架类型&#xff1a;TDDBDDBehaviorDrivenDevelopmentATDDAcceptanceTestDrivenDevelopmentMBTModelBasedTestingDDTDataDrivenTes…

HarmonyOS 签名打包Hap(s)、App(s)

1. 基本概念 HarmonyOS应用通过数字证书&#xff08;.cer文件&#xff09;和Profile文件&#xff08;.p7b文件&#xff09;来保证应用的完整性&#xff0c;数字证书和Profile文件可通过申请发布证书和Profile文件获取。   申请数字证书和Profile文件前&#xff0c;首先需要通…

mySQL数据库用户管理

目录 1.创建外键约束 外键的定义 主键表和外键表的理解 具体操作 2.数据库用户管理 新建用户 查看用户信息 重命名用户 删除用户 修改当前和其他用户登录密码 忘记 root密码的解决办法 3.数据库用户授权 授予权限 查看权限 撤销权限 1.创建外键约束 外键的定义…

又是阿里,通义灵码免费平替GitHub Copilot

毫无疑问&#xff0c;人工智能已经在影响着我们日常生活的方方面面&#xff0c;同样的在软件开发领域&#xff0c;AI正在改变我们的开发方式。在软件开发领域&#xff0c;尽管有许多强大的AI编码工具&#xff0c;但国产&#xff0c;免费&#xff0c;使用门槛低&#xff0c;用起…