超维空间S2无人机使用说明书——32、使用yolov7进行目标识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov7进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,也有更高版本的yolov8。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov7

步骤一: 启动摄像头,获取摄像头发布的图像话题

roslaunch realsense2_camera rs_camera.launch  

请添加图片描述

没有出现红色报错,出现如下界面,表明摄像头启动成功

请添加图片描述

步骤二:启动yolov7识别节点

roslaunch yolov7 yolov7.launch

launch文件如下,参数device设置为cuda,因为实际使用GPU加速,不是CPU跑,另外参数img_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。其他参数可以根据实际情况进行调整即可

<?xml version="1.0"?>
<launch>
    <node pkg="yolov7" type="YoloV7.py" name="yolov7">
        <!-- Path to your weight -->
        <param name="weights_path" type="str" value="/home/cwkj/cwkj_ws/src/ros-yolov7/cfg/weights/yolov7-tiny.pt"/>
        <!-- Path to a class_labels.txt file, if you leave it empty then no class labels are visualized.-->
        <param name="classes_path" type="str" value="//home/cwkj/cwkj_ws/src/ros-yolov7/cfg/config/coco.txt" />
        <!-- Input image topic name to subscribe to -->
        <param name="img_topic" type="str" value="/camera/color/image_raw" />
        <!-- [optional]  Confidence threshold (default=0.25) -->
        <param name="conf_thresh" type="double" value="0.20" />
        <!-- [optional]  Intersection over union threshold (default=0.45) -->
        <param name="iou_thresh" type="double" value="0.45" />
        <!-- [optional]  Queue size for publishing (default=3) -->
        <param name="queue_size" type="int" value="1" />
        <!-- [optional] Image size to which to resize each input image before feeding into the network (the final output is rescaled to the original image size) (default=640) -->
        <param name="img_size" type="int" value="640" />
        <!-- [optional] Flag whether to also publish image with the visualized detections (default=false) -->
        <param name="visualize" type="bool" value="true" />
        <!-- [optional] Torch device 'cuda' or 'cpu' (default="cuda") -->
        <param name="device" type="str" value="cuda" />
        <!-- [optional] Node frequency (default=10) -->
        <param name="frequency" type="int" value="10" />
    </node>
</launch>

请添加图片描述

出现如下界面表示yolov7启动成功

请添加图片描述

步骤三:打开rqt工具,查看识别效果

rqt_image_view 

请添加图片描述

等待出现如下界面后,选择yolov7/visualize/image查看yolov7识别效果

请添加图片描述

总结:可以根据实际需要选择和是的yolo版本进行物体识别。系统中配置的基于darknet的yolov3和yolov4也有着非常好的识别效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/266129.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio各种Gradle常见报错问题及解决方案

大家好&#xff0c;我是咕噜铁蛋&#xff01;在开发Android应用程序时&#xff0c;我们可能会遇到各种Gradle错误。这些错误可能来自不同的原因&#xff0c;例如依赖项问题、配置错误、版本冲突等。今天我通过搜索整理了一下&#xff0c;在这篇文章中&#xff0c;我将分享一些常…

AI 绘画StableDiffusionWebui图生图

介绍 stable-diffusion-webui AI绘画工具&#xff0c;本文介绍图生图&#xff0c;以一张图片做底图优化生成。 例如&#xff1a;上传一张真人照片&#xff0c;让AI把他改绘成动漫人物&#xff1b;上传画作线稿&#xff0c;让AI自动上色&#xff1b;上传一张黑白照&#xff0c…

001 图书增删改查 SSM MySQL

技术框架&#xff1a;Spring SpringMVC Mybatis JSP MySQL 001 图书增删改查 SSM MySQL package com.demo.controller;import com.demo.pojo.Book; import com.demo.service.BookService; import org.springframework.beans.factory.annotation.Autowired; import org.spri…

Uniapp + Vue3 + Pinia + Vant3 框架搭建

现在越来越多项目都偏向于Vue3开发&#xff0c;想着uniapp搭配Vue3试试效果怎么样&#xff0c;接下来就是详细操作步骤。 初始化Uniapp Vue3项目 App.vue setup语法 <script setup>import {onLaunch,onShow,onHide} from dcloudio/uni-apponLaunch(() > {console.l…

人工智能_机器学习072_SVM支持向量机_人脸识别模型训练_训练时间过长解决办法_数据降维_LFW人脸数据建模与C参数选择---人工智能工作笔记0112

我们先来看一下之前的代码: import numpy as np 导入数学计算库 from sklearn. svm import SVC 导入支持向量机 线性分类器 import matplotlib.pyplot as plt 加载人脸图片以后,我们用pyplot把人脸图片数据展示一下 from sklearn.model_selection import train_test_split 人脸…

Mysql-干净卸载教程

卸载 服务停掉 先把mysql服务停掉&#xff0c;如下点击右键&#xff0c;停止运行。 删除C盘内文件 接下来c盘里面的三个文件下的MySQL一一删除&#xff0c;需要注意的是 需要注意的是programdata文件下可能 隐藏了MySQL文件&#xff0c;所以可以在查看选项显示隐藏的文件。 …

032 - STM32学习笔记 - TIM基本定时器(一) - 定时器基本知识

032 - STM32学习笔记 - TIM定时器&#xff08;一&#xff09; - 基本定时器知识 这节开始学习一下TIM定时器功能&#xff0c;从字面意思上理解&#xff0c;定时器的基本功能就是用来定时&#xff0c;与定时器相结合&#xff0c;可以实现一些周期性的数据发送、采集等功能&#…

python实现批量替换目录下多个后缀为docx文档内容

批量替换目录下多个后缀为docx文档内容 摘要&#xff1a; 本文将介绍如何使用Python实现批量替换目录下多个后缀为docx文档内容。通过使用Python的os和glob模块&#xff0c;我们可以轻松地遍历目录下的所有文件&#xff0c;并对每个文件进行操作。此外&#xff0c;我们还将使用…

使用Ubuntu22+Minikube快速搭建K8S开发环境

安装Vmware 这一步&#xff0c;可以参考我的如下课程。 安装Ubuntu22 下载ISO镜像 这里我推荐从清华镜像源下载&#xff0c;速度会快非常多。 下载地址&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/22.04.3/ 如果你报名了我的这门视频课程&#xf…

【网络编程】网络通信基础——简述TCP/IP协议

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 一、ip地…

26、湾湾国立阳明交通大学、湾湾长庚纪念医院提出:ALL Attention U-Net,独属头部CT分割的[玛格丽特]

本文由台湾国立阳明交通大学、台湾长庚纪念医院于2023年12月16日在arXiv<Image and Video Processing>发表。 论文地址&#xff1a; 2312.10483.pdf (arxiv.org) 0、Abstract 脑出血在 Head CT扫描中作为第一线工具&#xff0c;帮助专家诊断不同类型的出血。然而&…

AI技术图像编辑 Luminar Neo最新中文 for Mac

Luminar Neo是一款功能强大的AI智能图像处理工具&#xff0c;借助Luminar Neo领先的AI技术和灵活的工作流程&#xff0c;用户可以完成创意任务并获得专业品质的编辑结果。以下是该软件的主要特点和功能&#xff1a; 支持多种文件格式&#xff1a;Luminar Neo支持多种文件格式&…

Android模拟器的安装和adb连接

一、前置说明 APP 自动化可以使用真机进行测试&#xff0c;也可以使用模拟器来模拟安卓设备。我们可以根据个人喜好安装模拟器&#xff0c;个人推荐安装两款模拟器&#xff1a;网易 MuMu 模拟器、夜神模拟器。 MuMu模拟器可以支持 Android 12 版本&#xff0c;优点是&#xf…

docker-compaose部署openldap

前段时间在本地搭建了一套gitlab geo测试环境&#xff0c;因为需要集成ldap&#xff0c;所以特意搭建下&#xff0c;特此作为笔记记录下。 文章目录 1. 前置条件2. 编写docker-openldap.yml文件3. 登录4. 使用创建组创建用户登录测试 1. 前置条件 安装docker-compose 安装docke…

el-select绑定值的坑

碰到一个问题&#xff0c;选择框的数据是后端传过来的&#xff0c;下拉框的数据也是后端传过来的&#xff0c;但是打开下拉框时&#xff0c;发现数据没有高亮。 最后发现&#xff0c;只要选择框v-model给的值和option的value绑定的值一致&#xff0c;就可以高亮。 大多数情况下…

041_小驰私房菜_MTK平台添加支持通过原生Camera API接口调用UsbCamera

平台:MTK 问题:通过调用Android Camera API去调用UsbCamera,需要做哪些修改? Google官方文档,关于usbcamera的支持: 外接 USB 摄像头 | Android 开源项目 | Android Open Source Project 相关修改内容如下: 一、MTK平台支持通过标准接口打开USB Camera 1)device相…

springboot集成websocket全全全!!!

一、界面展示 二、前置了解 1.什么是websocket WebSocket是一种在单个TCP连接上进行全双工通信的持久化协议。 全双工协议就是客户端可以给我们服务器发数据 服务器也可以主动给客户端发数据。 2.为什么有了http协议 还要websocket 协议 http协议是一种无状态&#xff0c;非…

红帆iOffice iorepsavexml.aspx接口存在任意文件上传漏洞 附POC

@[toc] 红帆iOffice iorepsavexml.aspx接口存在任意文件上传漏洞 附POC 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该文章仅…

为什么react call api in cDidMount

为什么react call api in cDM 首先&#xff0c;放到constructor或者cWillMount不是语法错误 参考1 参考2 根据上2个参考&#xff0c;总结为&#xff1a; 1、官网就是这么建议的&#xff1a; 2、17版本后的react 由于fiber的出现导致 cWM 会调用多次&#xff01; cWM 方法已…

16-高并发-队列术

队列&#xff0c;在数据结构中是一种线性表&#xff0c;从一端插入数据&#xff0c;然后从另一端删除数据。 在我们的系统中&#xff0c;不是所有的处理都必须实时处理&#xff0c;不是所有的请求都必须实时反馈结果给用户&#xff0c;不是所有的请求都必须100%一次性处理成功…