YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)

一、本文介绍

本文给大家带来的改进机制是MobileNetV3,其主要改进思想集中在结合硬件感知的网络架构搜索(NAS)和NetAdapt算法,以优化移动设备CPU上的性能。它采用了新颖的架构设计,包括反转残差结构和线性瓶颈层,以及新的高效分割解码器Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP),以提升在移动分类、检测和分割任务上的表现。实验表明,MobileNets在资源和准确性的权衡方面表现出色,并在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中展现了其有效性。

适用检测目标:这个模型非常适合轻量化的读者来使用,同时伴随着大幅度的涨点

推荐指数:⭐⭐⭐⭐⭐

  专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

效果回顾展示->

目录

一、本文介绍

二、MobileNetV3的框架原理

2.1 NAS和NetAdapt算法

2.2 反转残差结构和线性瓶颈层

三、MobileNetV3的核心代码

四、手把手教你添加MobileNetV3网络结构

修改一

修改二

修改三 

修改四

修改五 

修改六 

修改七

修改八

五、MobileNetV3的yaml文件

六、成功运行记录 

七、本文总结


二、MobileNetV3的框架原理

官方论文地址:官方论文地址点击即可跳转

官方代码地址:官方代码地址


MobileNetV3的主要改进思想集中在结合硬件感知的网络架构搜索(NAS)和NetAdapt算法,以优化移动设备CPU上的性能。它采用了新颖的架构设计,包括反转残差结构和线性瓶颈层,以及新的高效分割解码器Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP),以提升在移动分类、检测和分割任务上的表现。这些改进通过精心设计的轻量级架构,实现了更高的准确度、更低的延迟,并在不同的资源使用场景中实现了更好的性能。

MobileNetV3的主要创新点包括:

1. 结合了硬件感知的网络架构搜索(NAS)和NetAdapt算法,针对移动设备CPU进行优化。
2. 引入了新颖的架构设计,包括反转残差结构和线性瓶颈层。
3. 提出了高效的Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP)作为新的分割解码器。

2.1 NAS和NetAdapt算法

MobileNetV3采用了硬件感知的网络架构搜索(NAS)和NetAdapt算法,这两种技术相互补充,可以结合起来有效地为特定硬件平台找到优化的模型。特别是,它采用了平台感知NAS进行块级搜索,类似于之前的MnasNet-A1方法,使用相同的基于RNN的控制器和相同的分解层次搜索空间,以便为大型移动模型找到全局网络结构,目标是大约80ms的延迟。然后在此基础上应用NetAdapt算法和其他优化措施。这种方法允许在顺序方式中对单个层进行微调,而不是尝试推断粗略但全局的架构。NetAdapt的第二个技术是用于层级搜索,它更适用于小型移动模型,因为对于小型模型来说,准确性随着延迟的变化更加显著,因此需要一个较小的权重因子w = -0.15来补偿不同延迟下的较大准确性变化。通过这个新的权重因子,我们从头开始一个新的架构搜索,以找到初始种子模型,然后应用NetAdapt和其他优化来获得最终的MobileNetV3-Small模型

2.2 反转残差结构和线性瓶颈层

MobileNetV3在架构上进行了一些修改,以降低某些较慢层的延迟,同时保持准确性。这些修改超出了当前搜索空间的范围。第一项修改重新设计了网络的最后几层是如何相互作用以更有效地生成最终特征的。基于MobileNetV2的反转瓶颈结构的当前模型在最终层使用1x1卷积以扩展到更高维的特征空间。这一层对于预测中拥有丰富的特征至关重要。然而,这也增加了额外的延迟。为了减少延迟并保留高维特征,我们将这一层移到最终的平均池化之后

上图展示了MobileNetV2和MobileNetV3的网络结构层。

上侧 (MobileNetV2层):展示了反转残差和线性瓶颈结构。每个块由狭窄的输入和输出层组成,这些层没有非线性操作,后面跟着扩展到更高维空间并投影到输出的操作。残差连接连接了瓶颈层,而不是扩展层。

下侧 (MobileNetV2 + Squeeze-and-Excite): 展示了与Squeeze-and-Excite层一起使用的MobileNetV3。与先前不同,在残差层中应用了挤压和激励操作。


三、MobileNetV3的核心代码

下面的代码是整个MobileNetV1的核心代码,大家如果想学习可以和上面的框架原理对比着看一看估计会有一定的收获,使用方式看章节四。

"""A from-scratch implementation of MobileNetV3 paper ( for educational purposes ).

Paper
    Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244v5

author : shubham.aiengineer@gmail.com
"""


import torch
from torch import nn
from torchsummary import summary


class SqueezeExitationBlock(nn.Module):
    def __init__(self, in_channels: int):
        """Constructor for SqueezeExitationBlock.

        Args:
            in_channels (int): Number of input channels.
        """
        super().__init__()

        self.pool1 = nn.AdaptiveAvgPool2d(1)
        self.linear1 = nn.Linear(
            in_channels, in_channels // 4
        )  # divide by 4 is mentioned in the paper, 5.3. Large squeeze-and-excite
        self.act1 = nn.ReLU()
        self.linear2 = nn.Linear(in_channels // 4, in_channels)
        self.act2 = nn.Hardsigmoid()

    def forward(self, x):
        """Forward pass for SqueezeExitationBlock."""

        identity = x

        x = self.pool1(x)
        x = torch.flatten(x, 1)
        x = self.linear1(x)
        x = self.act1(x)
        x = self.linear2(x)
        x = self.act2(x)

        x = identity * x[:, :, None, None]

        return x


class ConvNormActivationBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: list,
        stride: int = 1,
        padding: int = 0,
        groups: int = 1,
        bias: bool = False,
        activation: torch.nn = nn.Hardswish,
    ):
        """Constructs a block containing a convolution, batch normalization and activation layer

        Args:
            in_channels (int): number of input channels
            out_channels (int): number of output channels
            kernel_size (list): size of the convolutional kernel
            stride (int, optional): stride of the convolutional kernel. Defaults to 1.
            padding (int, optional): padding of the convolutional kernel. Defaults to 0.
            groups (int, optional): number of groups for depthwise seperable convolution. Defaults to 1.
            bias (bool, optional): whether to use bias. Defaults to False.
            activation (torch.nn, optional): activation function. Defaults to nn.Hardswish.
        """
        super().__init__()

        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias=bias,
        )
        self.norm = nn.BatchNorm2d(out_channels)
        self.activation = activation()

    def forward(self, x):
        """Perform forward pass."""

        x = self.conv(x)
        x = self.norm(x)
        x = self.activation(x)

        return x


class InverseResidualBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        expansion_size: int = 6,
        stride: int = 1,
        squeeze_exitation: bool = True,
        activation: nn.Module = nn.Hardswish,
    ):

        """Constructs a inverse residual block

        Args:
            in_channels (int): number of input channels
            out_channels (int): number of output channels
            kernel_size (int): size of the convolutional kernel
            expansion_size (int, optional): size of the expansion factor. Defaults to 6.
            stride (int, optional): stride of the convolutional kernel. Defaults to 1.
            squeeze_exitation (bool, optional): whether to add squeeze and exitation block or not. Defaults to True.
            activation (nn.Module, optional): activation function. Defaults to nn.Hardswish.
        """

        super().__init__()

        self.residual = in_channels == out_channels and stride == 1
        self.squeeze_exitation = squeeze_exitation

        self.conv1 = (
            ConvNormActivationBlock(
                in_channels, expansion_size, (1, 1), activation=activation
            )
            if in_channels != expansion_size
            else nn.Identity()
        )  # If it's not the first layer, then we need to add a 1x1 convolutional layer to expand the number of channels
        self.depthwise_conv = ConvNormActivationBlock(
            expansion_size,
            expansion_size,
            (kernel_size, kernel_size),
            stride=stride,
            padding=kernel_size // 2,
            groups=expansion_size,
            activation=activation,
        )
        if self.squeeze_exitation:
            self.se = SqueezeExitationBlock(expansion_size)

        self.conv2 = nn.Conv2d(
            expansion_size, out_channels, (1, 1), bias=False
        )  # bias is false because we are using batch normalization, which already has bias
        self.norm = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        """Perform forward pass."""

        identity = x

        x = self.conv1(x)
        x = self.depthwise_conv(x)

        if self.squeeze_exitation:
            x = self.se(x)

        x = self.conv2(x)
        x = self.norm(x)

        if self.residual:
            x = x + identity

        return x


class MobileNetV3(nn.Module):
    def __init__(
        self,
        n_classes: int = 1000,
        input_channel: int = 3,
        config: str = "large",
        dropout: float = 0.8,
    ):
        """Constructs MobileNetV3 architecture

        Args:
        `n_classes`: An integer count of output neuron in last layer, default 1000
        `input_channel`: An integer value input channels in first conv layer, default is 3.
        `config`: A string value indicating the configuration of MobileNetV3, either `large` or `small`, default is `large`.
        `dropout` [0, 1] : A float parameter for dropout in last layer, between 0 and 1, default is 0.8.
        """

        super().__init__()

        # The configuration of MobileNetv3.
        # input channels, kernel size, expension size, output channels, squeeze exitation, activation, stride
        RE = nn.ReLU
        HS = nn.Hardswish
        configs_dict = {
            "small": (
                (16, 3, 16, 16, True, RE, 2),
                (16, 3, 72, 24, False, RE, 2),
                (24, 3, 88, 24, False, RE, 1),
                (24, 5, 96, 40, True, HS, 2),
                (40, 5, 240, 40, True, HS, 1),
                (40, 5, 240, 40, True, HS, 1),
                (40, 5, 120, 48, True, HS, 1),
                (48, 5, 144, 48, True, HS, 1),
                (48, 5, 288, 96, True, HS, 2),
                (96, 5, 576, 96, True, HS, 1),
                (96, 5, 576, 96, True, HS, 1),
            ),
            "large": (
                (16, 3, 16, 16, False, RE, 1),
                (16, 3, 64, 24, False, RE, 2),
                (24, 3, 72, 24, False, RE, 1),
                (24, 5, 72, 40, True, RE, 2),
                (40, 5, 120, 40, True, RE, 1),
                (40, 5, 120, 40, True, RE, 1),
                (40, 3, 240, 80, False, HS, 2),
                (80, 3, 200, 80, False, HS, 1),
                (80, 3, 184, 80, False, HS, 1),
                (80, 3, 184, 80, False, HS, 1),
                (80, 3, 480, 112, True, HS, 1),
                (112, 3, 672, 112, True, HS, 1),
                (112, 5, 672, 160, True, HS, 2),
                (160, 5, 960, 160, True, HS, 1),
                (160, 5, 960, 160, True, HS, 1),
            ),
        }

        self.model = nn.Sequential(
            ConvNormActivationBlock(
                input_channel, 16, (3, 3), stride=2, padding=1, activation=nn.Hardswish
            ),
        )

        for (
            in_channels,
            kernel_size,
            expansion_size,
            out_channels,
            squeeze_exitation,
            activation,
            stride,
        ) in configs_dict[config]:
            self.model.append(
                InverseResidualBlock(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    kernel_size=kernel_size,
                    expansion_size=expansion_size,
                    stride=stride,
                    squeeze_exitation=squeeze_exitation,
                    activation=activation,
                )
            )

        hidden_channels = 576 if config == "small" else 960
        _out_channel = 1024 if config == "small" else 1280

        self.model.append(
            ConvNormActivationBlock(
                out_channels,
                hidden_channels,
                (1, 1),
                bias=False,
                activation=nn.Hardswish,
            )
        )

        self.index = [16, 24, 48, 576]
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x):
        """Perform forward pass."""
        results = [None, None, None, None]

        for model in self.model:
            x = model(x)
            if x.size(1) in self.index:
                position = self.index.index(x.size(1))  # Find the position in the index list
                results[position] = x

        return results


if __name__ == "__main__":

    # Generating Sample image
    image_size = (1, 3, 224, 224)
    image = torch.rand(*image_size)

    # Model
    mobilenet_v3 = MobileNetV3(config="small")

    # summary(
    #     mobilenet_v3,
    #     input_data=image,
    #     col_names=["input_size", "output_size", "num_params"],
    #     device="cpu",
    #     depth=2,
    # )

    out = mobilenet_v3(image)
    print("Output shape : ", out.shape)

四、手把手教你添加MobileNetV3网络结构

这个主干的网络结构添加起来算是所有的改进机制里最麻烦的了,因为有一些网略结构可以用yaml文件搭建出来,有一些网络结构其中的一些细节根本没有办法用yaml文件去搭建,用yaml文件去搭建会损失一些细节部分(而且一个网络结构设计很多细节的结构修改方式都不一样,一个一个去修改大家难免会出错),所以这里让网络直接返回整个网络,然后修改部分 yolo代码以后就都以这种形式添加了,以后我提出的网络模型基本上都会通过这种方式修改,我也会进行一些模型细节改进。创新出新的网络结构大家直接拿来用就可以的。下面开始添加教程->

(同时每一个后面都有代码,大家拿来复制粘贴替换即可,但是要看好了不要复制粘贴替换多了)


修改一

我们复制网络结构代码到“ultralytics/nn/modules”目录下创建一个py文件复制粘贴进去 ,我这里起的名字是MobileNetV3。


修改二

找到如下的文件"ultralytics/nn/tasks.py" 在开始的部分导入我们的模型如下图。

from .modules.MobileNetV1 import MobileNetV3


修改三 

添加如下两行代码!!!


修改四

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m()
            c2 = m.width_list  # 返回通道列表
            backbone = True


修改五 

下面的两个红框内都是需要改动的。 

        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type


        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type

修改六 

如下的也需要修改,全部按照我的来。

代码如下把原先的代码替换了即可。 

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print

        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)


修改七

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

代码如下->

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5: # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1] # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


修改八

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改。

五、MobileNetV3的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MobileNetV3, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/264981.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java小案例-聊一聊Java、Spring、Dubbo三者SPI机制的原理和区别

前言 什么是SPI&#xff1f; 什么是SPI SPI全称为Service Provider Interface&#xff0c;是一种动态替换发现的机制&#xff0c;一种解耦非常优秀的思想&#xff0c;SPI可以很灵活的让接口和实现分离&#xff0c;让api提供者只提供接口&#xff0c;第三方来实现&#xff0c…

软件工程中关键的图-----知识点总结

目录 1.数据流图 2.变换型设计和事务型设计 3.程序流程图 4.NS图和PAD图&#xff1a; 5.UML图 1.用例图 2.类图 3.顺序图 4.协作图 本文为个人复习资料&#xff0c;包含个人复习思路&#xff0c;多引用&#xff0c;也想和大家分享一下&#xff0c;希望大家不要介意~ …

CVE-2023-49898 Apache incubator-streampark 远程命令执行漏洞

项目介绍 Apache Flink 和 Apache Spark 被广泛用作下一代大数据流计算引擎。基于大量优秀经验结合最佳实践&#xff0c;我们将任务部署和运行时参数提取到配置文件中。这样&#xff0c;带有开箱即用连接器的易于使用的 RuntimeContext 将带来更轻松、更高效的任务开发体验。它…

【LeetCode刷题笔记】贪心

135.分发糖果 解题思路: 两个数组 + 两次遍历 ,取 最大峰值 ,准备两个数组 L 和 R ,默认填充 1 , 先 从左往右 扫描一遍, 更新 L 数组,如果 右边

评论回复功能数据库设计

1. 评论的场景 类似csdn博客评论 2. 建表sql CREATE TABLE comment (id varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT id,parent_id varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT 父级评论id&#xff08;…

初识大数据,一文掌握大数据必备知识文集(3)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

State of PostgreSQL 2023 报告解读

基于 PostgreSQL 内核的时序数据库厂商 Timescale 发布了一年一度的 State of Postgres 2023 报告。 Timescale 介绍 简单先介绍一下 Timescale 这家公司的历史。它最早是提供了一个 PG 的插件&#xff0c;引入了 Hypertable 这个概念&#xff0c;来高效地处理时序数据&…

Flappy Bird游戏python完整源码

通过pygame实现当年风靡一时的flappy bird小游戏。 当前只设定了同样长度的管道&#xff0c;图片和声音文件自行导入。 效果如下&#xff1a; # -*- coding:utf-8 -*- """ 通过pygame实现曾风靡一时的flappybird游戏。 小鸟x坐标不变&#xff0c;画布左移实现…

mac上使用 Downie 下载网页视频

在今天的数字时代&#xff0c;视频内容在互联网上的传播变得更加普遍和便捷。然而&#xff0c;有时我们可能希望将网页上的视频保存在本地&#xff0c;以便离线观看或与他人分享。Downie 是一款强大而简便的工具&#xff0c;专门设计用于下载网页上的视频内容。本文将介绍 Down…

阿里巴巴虚拟试衣间:在模特身上尝试任何服装 | 开源日报 No.122

HumanAIGC/OutfitAnyone Stars: 1.8k License: NOASSERTION Outfit Anyone 由阿里巴巴集团的智能计算研究院开发。它提供了超高质量的虚拟试衣功能&#xff0c;用户可以在模特身上尝试任何服装&#xff0c;并且保证安全和隐私。主要功能包括&#xff1a; 提供超高质量的虚拟试…

Qt通用属性工具:随心定义,随时可见(一)

一、开胃菜&#xff0c;没图我说个DIAO 先不BB&#xff0c;给大家上个效果图展示下&#xff1a; 上图我们也没干啥&#xff0c;几行代码&#xff1a; #include "widget.h" #include <QApplication> #include <QObject> #include "QtPropertyEdit…

基于单片机设计的指纹锁(读取、录入、验证指纹)

一、前言 指纹识别技术是一种常见的生物识别技术&#xff0c;利用每个人指纹的唯一性进行身份认证。相比于传统的密码锁或者钥匙锁&#xff0c;指纹锁具有更高的安全性和便利性&#xff0c;以及防止钥匙丢失或密码泄露的优势。 基于单片机设计的指纹锁项目是利用STC89C52作为…

基于Spring自动注入快速实现策略模式+工厂模式优化过多的if..else

一、策略模式 1.1策略模式定义 在策略模式&#xff08;Strategy Pattern&#xff09;中一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。 在策略模式定义了一系列算法或策略&#xff0c;并将每个算法封装在独立的类中&#xff0c;使得它们可以互相…

cleanmymac和柠檬清理哪个好 cleanmymac有必要买吗

大家好&#xff0c;不定期分享正版软件激活安装、使用帮助&#xff0c;售后等知识。 在我们的日常使用中&#xff0c;电脑常常会出现卡顿、运行缓慢的情况。这时候&#xff0c;我们通常会想到清理电脑&#xff0c;以期望恢复电脑的正常运行状态。而在清理电脑时&#xff0c;有两…

Service详解【六】

文章目录 6. Service详解6.1 Service介绍6.2 Service类型6.3 Service使用6.3.1 实验环境准备6.3.2 ClusterIP类型的Service6.3.3 HeadLiness类型的Service6.3.4 NodePort类型的Service6.3.5 LoadBalancer类型的Service6.3.6 ExternalName类型的Service 6.4 Ingress介绍6.5 Ingr…

多个bean获取同一个Service,获取的内存地址是同一块;引用bean地址存储在一个map中

public class UserService {public void test() {System.out.println("---test----");} } Testpublic void doesNotContain1(){// 创建Spring容器AnnotationConfigApplicationContext applicationContext new AnnotationConfigApplicationContext();// 向容器中注册…

3 pandas之dataframe

定义 DataFrame是一个二维数据结构&#xff0c;即数据以行和列的方式以表格形式对齐。 DataFrame特点&#xff1a; 存在不同类型的列大小可变带有标签的轴可对列和行进行算数运算 构造函数 pandas.DataFrame( data, index, columns, dtype, copy)参数解释&#xff1a; 序号…

【SpringBoot快速入门】(1)SpringBoot的开发步骤、工程构建方法以及工程的快速启动详细讲解

目录 SpringBoot简介1 SpringBoot快速入门1.1 开发步骤1.1.1 创建新模块1.1.2 创建 Controller1.1.3 启动服务器1.1.4 进行测试 2 对比3 官网构建工程3.1 进入SpringBoot官网3.2 选择依赖3.3 生成工程 4 SpringBoot工程快速启动4.1 问题导入4.2 打包4.3 启动 之前我们已经学习的…

浅谈Redis分布式锁(上)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 不论面试还是实际工作中…

Netty 与 RPC(一)

Netty 与 RPC Netty 原理 Netty 是一个高性能、异步事件驱动的 NIO 框架&#xff0c;基于 JAVA NIO 提供的 API 实现。它提供了对TCP、UDP 和文件传输的支持&#xff0c;作为一个异步 NIO 框架&#xff0c;Netty 的所有 IO 操作都是异步非阻塞的&#xff0c;通过 Future-List…