0.618算法和基于Armijo准则的线搜索回退法

0.618代码如下:

import math

# 定义函数h(t) = t^3 - 2t + 1

def h(t):

    return t**3 - 2*t + 1

# 0.618算法

def golden_section_search(a, b, epsilon): 

    ratio = 0.618 

    while (b - a) > epsilon: 

        x1 = b - ratio * (b - a) 

        x2 = a + ratio * (b - a) 

        h_x1 = h(x1) 

        h_x2 = h(x2) 

        if h_x1 < h_x2: 

            b = x2 

        else: 

            a = x1 

    return a  # 或者返回 b,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618算法找到的最小值:", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np 

  def h(t): 

    return t**3 - 2*t + 1 

  def h_derivative(t): 

    return 3*t**2 - 2 

  def armijo_line_search(t_current, direction, alpha, beta, c1): 

    t = t_current 

    step_size = 1.0 

    while True: 

        if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t): 

            return t + direction * step_size 

        else: 

            step_size *= beta 

        if np.abs(step_size) < 1e-6: 

            break 

    return None 

  def gradient_descent(start, end, alpha, beta, c1, epsilon): 

    t = start 

    while True: 

        if t > end: 

            break 

        direction = -h_derivative(t)  # 负梯度方向 

        next_t = armijo_line_search(t, direction, alpha, beta, c1) 

        if next_t is None or np.abs(h_derivative(next_t)) <= epsilon: 

            return next_t 

        t = next_t 

    return None 

  # 参数设置 

alpha = 0.1  # Armijo准则中的参数alpha 

beta = 0.5  # Armijo准则中的参数beta 

c1 = 1e-4  # 自定义参数,用于控制Armijo条件的满足程度 

epsilon = 1e-6  # 梯度范数的终止条件 

  # 搜索区间为[0,3] 

start = 0 

end = 3 

  # 执行梯度下降算法,求得近似最小值点 

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon) 

print("求得的最小值点为:", t_min) 

print("最小值点的函数值为:", h(t_min))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/264909.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

九:爬虫-MongoDB基础

MongoDB介绍 MongoDB是一个介于关系数据库和非关系数据库之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系数据库的。它支持的数据结构非常松散&#xff0c;因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大&#xff0c;其…

Java设计模式-原型模式

目录 一、克隆羊问题 二、传统方式解决 三、基本介绍 四、浅拷贝和深拷贝 &#xff08;一&#xff09;浅拷贝介绍 &#xff08;二&#xff09;深拷贝 五、原型模式深拷贝 &#xff08;一&#xff09;重写clone方法 &#xff08;二&#xff09;对象序列化 六、注意事项…

法线贴图实现地形模型皱褶、凹凸不平的纹理效果

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 法线贴图在3D建模中扮演着重要的角色&#xff0c;它通过模拟表面的微…

es倒排索引以及分词

单词词典(Term Dictionary)是倒排索引的重要组成记录所有文档的单词&#xff0c;一般都比较大 记录单词到倒排排列表的关联信息 倒排列表(Posting List)记录了单词对应的文档集合&#xff0c;由倒排索项( Posting )组成倒排索项( Posting)主要包含如下信息: 文档Id&#xff0c…

前端基础location的使用

概念 获取当前页面的地址信息&#xff0c;还可以修改某些属性&#xff0c;实现页面跳转和刷新等。 样例展示 window.location 含义.originURL 基础地址&#xff0c;包括协议名、域名和端口号.protocol协议 (http: 或 https:).host域名端口号.hostname域名.port端口号.pathname路…

postMessage——不同源的网页直接通过localStorage/sessionStorage/Cookies——技能提升

最近遇到一个问题&#xff0c;就是不同源的两个网页之间进行localstorage或者cookie的共享。 上周其实遇到过一次&#xff0c;觉得麻烦就让后端换了种方式处理了&#xff0c;昨天又遇到了同样的问题。 使用场景 比如从网页A通过iframe跳转到网页B&#xff0c;而且这两个网页…

[C语言]程序练习(一)

你好&#xff0c;这里是争做图书馆扫地僧的小白。 个人主页&#xff1a;争做图书馆扫地僧的小白_-CSDN博客 目标&#xff1a;希望通过学习技术&#xff0c;期待着改变世界。 目录 前言 一、常量练习 &#xff08;一&#xff09;整型常量 &#xff08;二&#xff09;浮点型常…

H266/VVC帧内预测编码

预测编码技术 预测编码&#xff08;Prediction Coding&#xff09;是指利用已编码的一个或多个样本值&#xff0c;根据某种模型或方法&#xff0c;对当前的样本值进行预测&#xff0c;并对样本真实值和预测值之间的差值进行编码。 视频中的每个像素看成一个信源符号&#xff…

点击筛选框动态增加 多条可输入Table列 以及通过操作数组改造数据

点击筛选框动态增加 多条可输入Table列 以及通过操作数组改造数据 <el-col :span"8" class"tab_group"><el-form-item label"动态筛选"><el-select v-model.trim"ruleForm.flowType" placeholder"请选择" …

什么是Vue的生命周期 ?

使用最多的&#xff1a; created&#xff1a;进行axiosmounted&#xff1a;挂载元素内dom节点的获取&#xff1b; 新老版本生命周期对比 区别: Componsition API中,生命周期是从vue中导出的,需要用到的要进行导入,setup除外 除setup外,其他的生命周期都是写在setup中 setu…

【XML】TinyXML 详解

1、简介 优点&#xff1a; TinyXML 是一个简单、小型的 C XML 解析器&#xff0c;可以轻松集成到项目中。 TinyXML 解析 XML 文档&#xff0c;并根据该文档构建可读取、修改和保存的文档对象模型 (DOM) TinyXML 是在 ZLib 许可下发布的&#xff0c;因此可以在开源或商业代码中…

非阻塞 IO(NIO)

文章目录 非阻塞 IO(NIO)模型驱动程序应用程序模块使用 非阻塞 IO(NIO) 上一节中 https://blog.csdn.net/tyustli/article/details/135140523&#xff0c;使用等待队列头实现了阻塞 IO 程序使用时&#xff0c;阻塞 IO 和非阻塞 IO 的区别在于文件打开的时候是否使用了 O_NONB…

使用宝塔面板部署前端项目到服务器

目录 文章目录 前言 一、第一步&#xff1a;创建文件夹 二、第二步&#xff1a;部署前端项目 三、第三步&#xff1a;打开防火墙 文章目录 前言第一步&#xff1a;创建文件夹第二步&#xff1a;部署前端项目第三步&#xff1a;打开防火墙总结 前言 在此之前&#xff0c;我…

Ubuntu 常用命令之 exit 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 exit命令在Ubuntu系统下用于结束一个终端会话。它可以用于退出当前的shell&#xff0c;结束当前的脚本执行&#xff0c;或者结束一个ssh会话。 exit命令的参数是一个可选的整数&#xff0c;用于指定退出状态。如果没有指定&#…

如何将阿里通义千问大模型AI接入自己的项目里

如何将阿里通义千问大模型AI接入自己的项目里 一、阿里通义千问大模型API二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、 如何获取appKey和uid1、申请appKey:2、获取appKey和uid 四、重要说明 一、阿里通义千问大模型API 基于阿里通义千问大模型AI的智能…

PyTorch加载数据以及Tensorboard的使用

一、PyTorch加载数据初认识 Dataset:提供一种方式去获取数据及其label 如何获取每一个数据及其label 总共有多少的数据 Dataloader:为后面的网络提供不同的数据形式 数据集 在编译器中导入Dataset from torch.utils.data import Dataset 可以在jupyter中查看Dataset官方文档&…

【Flutter】黑白图片

一、将图片处理成黑白图片 //第一种方法CachedNetworkImage(imageUrl: imageUrl,width: 80,height: 80,fit: BoxFit.cover,color: Colors.black,//目标颜色colorBlendMode: BlendMode.color,//颜色混合模式)//第二种方法ShaderMask(shaderCallback: (Rect bounds) {return Lin…

【Pika Labs】图片想法转视频-使用教程

关于Pika Labs 通过Pika Labs&#xff0c;可将你的想法转化为视频&#xff0c;将您的创造力付诸实践。 链接: Pika 登录Pika Labs 你可以通过Pika官方主页链接: Pika或者是Diacord社区邀请链接Discord Pika 进入Pika 社区。 接受邀请&#xff0c;按需回答完例行提问&#…

Python如何生成随机图形验证码

python生成随机图形验证码 使用python生成随机图片验证码,需要使用pillow模块 1.安装pillow模块 pip install pillow 2.pillow模块的基本使用 1.创建图片 from PIL import Image #定义使用Image类实例化一个长为400px,宽为400px,基于RGB的(255,255,255)颜色的图片 img1Ima…

「微服务模式」七种微服务反模式

什么是微服务 流行语经常为进化的概念提供背景&#xff0c;并且需要一个良好的“标签”来促进对话。微服务是一个新的“标签”&#xff0c;它定义了我个人一直在发现和使用的领域。文章和会议描述了一些事情&#xff0c;我慢慢意识到&#xff0c;过去几年我一直在发展自己的个人…