基于stm32的超声波测距

文章目录

  • 一、HC-SR04超声波测距模块说明
    • 1、产品特点
    • 2、电气参数
    • 3、HC-SR04超声波测距模块
    • 4、超声波时序图
  • 二、 CUBEMX配置
  • 三、keil配置代码

模块选择:
stm32f103c8芯片
HC-SR04超声波测距模块

一、HC-SR04超声波测距模块说明

1、产品特点

HC-SR04 超声波测距模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm;模块包括超声波发射器、接收器与控制电路。

基本工作原理:
(1)采用 IO 口 TRIG 触发测距,给最少 10us 的高电平信呈。
(2)模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;
(3)有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声
波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。

2、电气参数

在这里插入图片描述

3、HC-SR04超声波测距模块

在这里插入图片描述
VCC 供 5V电源,GND 为地线,TRIG 触 发 控 制 信 号 输入,ECHO 回响信号输出等四个接口端。

4、超声波时序图

在这里插入图片描述
以上时序图表明你只需要提供一个 10uS 以上脉冲触发信号,该模块内部将
发出 8 个 40kHz 周期电平并检测回波。一旦检测到有回波信号则输出回响信号。
回响信号的脉冲宽度与所测的距离成正比。由此通过发射信号到收到的回响信号
时间间隔可以计算得到距离。公式:uS/58=厘米或者 uS/148=英寸;或是:距离= 高电平时间*声速(340M/S)/2;建议测量周期为 60ms 以上,以防止发射信号对
回响信号的影响。

注:
1、此模块不宜带电连接,若要带电连接,则先让模块的 GND 端先连接,否则会影响模块的正常工作。
2、测距时,被测物体的面积不少于 0.5 平方米且平面尽量要求平整,否则影响测量的结果

二、 CUBEMX配置

配置rcc
在这里插入图片描述

设置时钟为72
在这里插入图片描述

配置串口
在这里插入图片描述
在这里插入图片描述

定时器配置
为了不在重复配置,这里就直接配置成输入捕获模式,开启溢出中断与捕获中断,方法一只需要开启定时器即可。利用TIM1_CH4是因为Echo与TIM1_CH4共用引脚。
在这里插入图片描述
在这里插入图片描述

命名引脚
在这里插入图片描述
在这里插入图片描述

生成项目
在这里插入图片描述
在这里插入图片描述

三、keil配置代码

重定向printf函数,打开 usart.c,在 /* USER CODE BEGIN 0 / 和 / USER CODE END 0 */加入以下代码:

 
#include <stdio.h>
 
#ifdef __GNUC__
	/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
	set to 'Yes') calls __io_putchar() */
	#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
	#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
 
#endif /* __GNUC__ */

在这里插入图片描述

在 /* USER CODE BEGIN 1 / 和 / USER CODE END 1 */ 之间加入以下代码:

 
/**
* @brief Retargets the C library printf function to the USART.
* @param None
* @retval None
*/
PUTCHAR_PROTOTYPE
{
	/* Place your implementation of fputc here */
	/* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */
	HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
	return ch;
}

在这里插入图片描述

在tim.c中编写毫秒延时函数

/* USER CODE BEGIN 1 */
 
//使用TIM1来做us级延时函数,此函数为1us
void TIM1_Delay_us(uint16_t n_us)
{
	/* 使能定时器1计数 */
	__HAL_TIM_ENABLE(&htim1);
	
	__HAL_TIM_SetCounter(&htim1, 0);//htim1
	
	while(__HAL_TIM_GetCounter(&htim1) < ((1 * n_us)-1) );
	
    /* 失能定时器1计数 */
	__HAL_TIM_DISABLE(&htim1);
}
 
 
/* USER CODE END 1 */

在这里插入图片描述

在main.c中编写超声波开始函数

void Start()
{
	HAL_GPIO_WritePin(Trig_GPIO_Port, Trig_Pin, GPIO_PIN_SET);//拉高
		
	TIM1_Delay_us(20);
		
	HAL_GPIO_WritePin(Trig_GPIO_Port, Trig_Pin, GPIO_PIN_RESET);//拉低
}

在这里插入图片描述

在主函数外定义变量

int Cnt;//计数值
float Distance;//距离

在这里插入图片描述
重写主函数

int main(void)
{
  /* USER CODE BEGIN 1 */
 
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_TIM1_Init();
  /* USER CODE BEGIN 2 */
	
	HAL_TIM_Base_Start(&htim1);//开启定时器
	
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
 
  while (1{
		/* 定时器1,通道1,模式随便,主要用于计数,没有使用边沿捕获 */	
		Start();//开启超声波模块
		
		HAL_TIM_Base_Start(&htim1);//开启定时器
 
		//对超声波输入端口操作
		while( HAL_GPIO_ReadPin (Echo_GPIO_Port ,Echo_Pin) == GPIO_PIN_RESET);//等待输入电平拉高
		
		__HAL_TIM_SetCounter(&htim1,0);
		
		//对超声波输入端口操作
		while( HAL_GPIO_ReadPin (Echo_GPIO_Port ,Echo_Pin) == GPIO_PIN_SET);//等待输入电平变低
		
		Cnt = __HAL_TIM_GetCounter(&htim1);
		
		HAL_TIM_Base_Stop(&htim1);
		
		Distance = Cnt*340/2*0.000001*100 ;
		
		printf("Distance=%.1fcm\n",Distance);
		
		HAL_Delay(500);
		
    /* USER CODE END WHILE */
 
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

硬件连接
trig——PA2;
echo——PA11;
vcc——3.3v;
GND——GND;

烧录运行结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/26364.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UNIX网络编程卷一 学习笔记 第十七章 ioctl操作

ioctl函数传统上一直作为那些不适合归入现有已定义类别的特性的系统接口。POSIX正在通过创建特定的包装函数来代替ioctl函数的某些功能&#xff0c;以取而代之的是那些已被POSIX标准化的函数。例如&#xff0c;Unix终端接口传统上使用ioctl函数访问&#xff0c;而POSIX为终端创…

CVE漏洞复现-CVE-2023-32233 NetFilter权限提升

CVE-2023-32233 NetFilter权限提升 Netfilter是Linux 内核中的网络数据包处理框架&#xff08;iptables&#xff09;通过各种规则和过滤器&#xff0c;基于数据包的来源、目标地址、协议类型、端口号等信息&#xff0c;控制网络流量和数据包的转发和处理具体&#xff0c;详情请…

灵活使用Postman环境变量和全局变量,提高接口测试效率!

目录 前言&#xff1a; 环境变量和全局变量的概念 环境变量和全局变量的使用方法 1. 定义变量 2. 使用变量 环境变量和全局变量的实例代码 变量的继承和覆盖 变量的动态设置 总结&#xff1a; 前言&#xff1a; Postman是一个流行的API开发和接口测试工具&#xff0c;…

RK平台使用i2c-tools调试

简介 i2ctool是嵌入式开发过程中调试i2c设备常用的工具包&#xff0c;其中比较常用的有&#xff1a;i2cdetect、i2cdump、i2cset、i2cget。 RK平台的SDK大部分默认都会带这个工具&#xff0c;如果没有编译进去或者找不到的情况下可以自己从网上下载编译进去&#xff1a;https:…

JavaScript中的Hook技术:特性、优点、缺点和使用场景

引言&#xff1a; 随着JavaScript的不断发展&#xff0c;开发者们正在寻找更灵活和可扩展的方式来修改或扩展现有的代码。其中一种广泛应用的技术是"Hook"&#xff0c;它允许开发者拦截和修改现有的函数或方法的行为。本文将详细介绍JavaScript中的Hook技术&#xf…

Hive库表基本操作

Hive基本操作-库、表 规则语法 大小写规则: 1. hive的数据库名、表名都不区分大小写 2. 建议关键字大写 复制代码 命名规则&#xff1a; 1. 名字不能使用数字开头 2. 不能使用关键字 3. 尽量不使用特殊符号 复制代码 库操作语法 创建数据库 创建数据库的本质就是在hive…

javascript基础十六:Ajax 原理是什么?如何实现?

一、是什么 AJAX全称(Async Javascript and XML) 即异步的JavaScript 和XML&#xff0c;是一种创建交互式网页应用的网页开发技术&#xff0c;可以在不重新加载整个网页的情况下&#xff0c;与服务器交换数据&#xff0c;并且更新部分网页 Ajax的原理简单来说通过XmlHttpRequ…

算法复杂度分析(一)

求第n个斐波那契数列 斐波那契数 0 1 1 2 3 5 数列默认从0开始 public static int fib1(int n) {if(n < 1) return n;return fib1(n-1) fib1(n-2);}public static int fib2(int n) {if(n < 1) return n;int first 0;int secend 1;for (int i 0; i < n-1; i) {int…

solr教程

一&#xff1a;安装配置 下载完成之后&#xff0c;解压solr文件&#xff0c;解压tomcat 1.1 在tomcat安装solr,并且建立solrCore 把solr5.5目录下的server/solr-webapp/webapp 重命名为solr,并且放置到tomcat/webapp的目录下。 打开tomcat/webapp/solr/WEB-INF/web.xml新建…

DevOps - (3)使用SOPS 和Terraform来加密/解密敏感信息文件

一&#xff1a;背景 每个人都想将自己的敏感数据以加密格式存储在一个安全的地方。例如我们的数据库的账号密码&#xff0c;不能以纯文本的方式来记录。让我们利用Mozilla SOPS以一种安全的方式实现它。SOPS支持将文件加密为二进制文件&#xff0c;除此之外&#xff0c;它还具…

LNMT架构之LNMT与nginx动静分离

LNMT架构之LNMT与nginx动静分离 目录 一、实验前提环境配置 &#xff08;一&#xff09;关闭防火墙&#xff0c;安装本地yum &#xff08;二&#xff09;部署tomcat &#xff08;三&#xff09;部署Mariadb &#xff08;四&#xff09;部署nginx 二、动静分离 步骤一&a…

RISC-V IDE MRS使用笔记(八):实现局域网下的远程调试功能

RISC-V IDE MRS使用笔记(八)&#xff1a;实现局域网下的远程调试功能 1.原理介绍 MRS调试时上位机与硬件的通信基于gdb客户端与服务端的连接。调试时&#xff0c;首先启动openocd以挂载gdbserver的服务到指定端口上。通信建立后&#xff0c;监听到界面操作后以gdb指令的形式发…

Springboot +spring security,OAuth2 四种授权模式概念

一.简介 这篇文章来讲下Spring Security OAuth2 四种授权模式。 二.什么是OAuth2 OAuth 2.0 是一种用于授权的开放标准&#xff0c;允许用户授权第三方应用程序访问他们的资源&#xff0c;例如照片、视频或其他个人信息。OAuth 2.0 提供了一些不同的授权模式&#xff0c;包括…

测试替身Test Doubles的5类型(Mockito)

测试替身Test Doubles的5类型(Mockito) 我们有一个名为 BankAccount 的类。 数据库用于存储和检索银行帐户信息。 我们想测试 BankAccount 中的逻辑&#xff0c;而不必担心它使用的底层数据库.由此类实现——它将 SQL 查询发送到数据库并返回其中包含的值。 测试替身Test Dou…

Django实现接口自动化平台(五)httprunner(4.x)介绍【持续更新中】

上一章&#xff1a; Django实现接口自动化平台&#xff08;四&#xff09;解决跨域问题【持续更新中】_做测试的喵酱的博客-CSDN博客 下一章&#xff1a; 一、httpruner介绍 1.1 背景&#xff1a; 之所以学习httpruner的用法&#xff0c;是要把httpruner嵌入我们的自动化平…

自动缩放Kubernetes上的Kinesis Data Streams应用程序

想要学习如何在Kubernetes上自动缩放您的Kinesis Data Streams消费者应用程序&#xff0c;以便节省成本并提高资源效率吗&#xff1f;本文提供了一个逐步指南&#xff0c;教您如何实现这一目标。 通过利用Kubernetes对Kinesis消费者应用程序进行自动缩放&#xff0c;您可以从其…

2023年陕西彬州第八届半程马拉松赛153pb完赛

1、赛事背景 2023年6月3日&#xff0c;我参加了2023陕西彬州第八届半程马拉松赛&#xff0c;最终153完赛&#xff0c;PB了5分钟。起跑时间早上7点30分&#xff0c;毕竟6月天气也开始热了。天气预报显示当天还是小到中雨&#xff0c;上次铜川宜君半马也是雨天跑的&#xff0c;阴…

lecory 波形二进制文件头(.trc)定义

1.文件头&#xff0c;从0字节开始 byte[] lecroy_trc_header new byte[]{0x23,0x39,0x30,0x30,0x32,0x30,0x30,0x30,0x31,0x34,0x34,0x57,0x41,0x56,0x45,0x44,0x45,0x53,0x43,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x4C,0x45,0x43,0x52,0x4F,0x59,0x5F,0x32,0x5F,0x33,0x…

研发工程师玩转Kubernetes——使用Ingress进行路由

依据微服务理念&#xff0c;我们希望每个独立的功能由一个服务支持。比如有两个接口&#xff1a;http://www.xxx.com/plus和http://www.xxx.com/minus&#xff0c;前者由一个叫plus-service的服务支持&#xff0c;后者由一个叫minus-service的服务支持。这样就需要一个路由层&a…

Revit问题:创建牛腿柱和快速生成圈梁

一、Revit中如何用体量创建牛腿柱 牛腿&#xff1a;悬臂体系的挂梁与悬臂间必然出现搁置构造&#xff0c;通常就将悬臂端和挂梁端的局部构造&#xff0c;又称梁托。牛腿的作用是衔接悬臂梁与挂梁&#xff0c; 并传递来自挂梁的荷载。牛腿柱可以用于桥梁、厂房的搭建&#xff0c…