【深度学习】注意力机制(七)Agent Attention

本文介绍Agent Attention注意力机制,Transformer中的Attention模块可以提取全局语义信息,但是计算量太大,Agent Attention是一种计算非常有效的Attention模块。

论文:Agent Attention: On the Integration of Softmax and Linear Attention

代码:https://github.comA/leaplabthu/agent-attention

一、模块结构

Softmax Attention,Linear Attention, Agent Attention结构如下图:

Softmax Attention先进行Q和K的矩阵乘法,然后经过softmax并与V相乘,计算量大。

Linear Attention先进行K和V的矩阵乘法,然后再与Q相乘,降低了计算量。

Agent Attention引入了agent token A,A的维度为(n,d),n远小于N,通过与A的矩阵乘法降低了Q,K的维度,进而降低计算量。

二、推理公式

传统Attention的计算如下(x是输入,W是权重):

Softmax Attention就是将上式中的Sim(Q,K)变成了下式:

而Linear Attention的Sim(Q,K)如下:

为了简单起见,可以将Softmax Attention和Linear Attention写成下式:

那么Agent Attention可以写成:

等价于下式(A是引入的Agent token):

下图是Agent Attention的示意图(可以看到与最上面的图和上式很相似):

三、代码

Agent Attention可以放入各种Transformer模块中,这里展示PVT中使用Agent Attention的代码(就是将PVT原有的Attention模块替换成Agent Attention):

# -----------------------------------------------------------------------
# Agent Attention: On the Integration of Softmax and Linear Attention
# Modified by Dongchen Han
# -----------------------------------------------------------------------


import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg

__all__ = [
    'agent_pvt_tiny', 'agent_pvt_small', 'agent_pvt_medium', 'agent_pvt_large'
]


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class AgentAttention(nn.Module):
    def __init__(self, dim, num_patches, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
                 sr_ratio=1, agent_num=49, **kwargs):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_patches = num_patches
        window_size = (int(num_patches ** 0.5), int(num_patches ** 0.5))
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

        self.agent_num = agent_num
        self.dwc = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=(3, 3), padding=1, groups=dim)
        self.an_bias = nn.Parameter(torch.zeros(num_heads, agent_num, 7, 7))
        self.na_bias = nn.Parameter(torch.zeros(num_heads, agent_num, 7, 7))
        self.ah_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, window_size[0] // sr_ratio, 1))
        self.aw_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, 1, window_size[1] // sr_ratio))
        self.ha_bias = nn.Parameter(torch.zeros(1, num_heads, window_size[0], 1, agent_num))
        self.wa_bias = nn.Parameter(torch.zeros(1, num_heads, 1, window_size[1], agent_num))
        trunc_normal_(self.an_bias, std=.02)
        trunc_normal_(self.na_bias, std=.02)
        trunc_normal_(self.ah_bias, std=.02)
        trunc_normal_(self.aw_bias, std=.02)
        trunc_normal_(self.ha_bias, std=.02)
        trunc_normal_(self.wa_bias, std=.02)
        pool_size = int(agent_num ** 0.5)
        self.pool = nn.AdaptiveAvgPool2d(output_size=(pool_size, pool_size))
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, H, W):
        b, n, c = x.shape
        num_heads = self.num_heads
        head_dim = c // num_heads
        q = self.q(x)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(b, c, H, W)
            x_ = self.sr(x_).reshape(b, c, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(b, -1, 2, c).permute(2, 0, 1, 3)
        else:
            kv = self.kv(x).reshape(b, -1, 2, c).permute(2, 0, 1, 3)
        k, v = kv[0], kv[1]

        agent_tokens = self.pool(q.reshape(b, H, W, c).permute(0, 3, 1, 2)).reshape(b, c, -1).permute(0, 2, 1)
        q = q.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3)
        k = k.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3)
        v = v.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3)
        agent_tokens = agent_tokens.reshape(b, self.agent_num, num_heads, head_dim).permute(0, 2, 1, 3)

        kv_size = (self.window_size[0] // self.sr_ratio, self.window_size[1] // self.sr_ratio)
        position_bias1 = nn.functional.interpolate(self.an_bias, size=kv_size, mode='bilinear')
        position_bias1 = position_bias1.reshape(1, num_heads, self.agent_num, -1).repeat(b, 1, 1, 1)
        position_bias2 = (self.ah_bias + self.aw_bias).reshape(1, num_heads, self.agent_num, -1).repeat(b, 1, 1, 1)
        position_bias = position_bias1 + position_bias2
        agent_attn = self.softmax((agent_tokens * self.scale) @ k.transpose(-2, -1) + position_bias)
        agent_attn = self.attn_drop(agent_attn)
        agent_v = agent_attn @ v

        agent_bias1 = nn.functional.interpolate(self.na_bias, size=self.window_size, mode='bilinear')
        agent_bias1 = agent_bias1.reshape(1, num_heads, self.agent_num, -1).permute(0, 1, 3, 2).repeat(b, 1, 1, 1)
        agent_bias2 = (self.ha_bias + self.wa_bias).reshape(1, num_heads, -1, self.agent_num).repeat(b, 1, 1, 1)
        agent_bias = agent_bias1 + agent_bias2
        q_attn = self.softmax((q * self.scale) @ agent_tokens.transpose(-2, -1) + agent_bias)
        q_attn = self.attn_drop(q_attn)
        x = q_attn @ agent_v

        x = x.transpose(1, 2).reshape(b, n, c)
        v = v.transpose(1, 2).reshape(b, H, W, c).permute(0, 3, 1, 2)
        x = x + self.dwc(v).permute(0, 2, 3, 1).reshape(b, n, c)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_patches, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1,
                 agent_num=49, attn_type='A'):
        super().__init__()
        self.norm1 = norm_layer(dim)
        assert attn_type in ['A', 'B']
        if attn_type == 'A':
            self.attn = AgentAttention(
                dim, num_patches,
                num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio,
                agent_num=agent_num)
        else:
            self.attn = Attention(
                dim,
                num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        # assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
        #     f"img_size {img_size} should be divided by patch_size {patch_size}."
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        B, C, H, W = x.shape

        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        H, W = H // self.patch_size[0], W // self.patch_size[1]

        return x, (H, W)


class PyramidVisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], agent_sr_ratios='1111', num_stages=4,
                 agent_num=[9, 16, 49, 49], attn_type='AAAA', **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
        self.num_stages = num_stages

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0

        attn_type = 'AAAA' if attn_type is None else attn_type
        for i in range(num_stages):
            patch_embed = PatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i - 1) * patch_size),
                                     patch_size=patch_size if i == 0 else 2,
                                     in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                     embed_dim=embed_dims[i])
            num_patches = patch_embed.num_patches
            pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dims[i]))
            pos_drop = nn.Dropout(p=drop_rate)

            block = nn.ModuleList([Block(
                dim=embed_dims[i], num_patches=num_patches, num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
                qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j],
                norm_layer=norm_layer, sr_ratio=sr_ratios[i] if attn_type[i] == 'B' else int(agent_sr_ratios[i]),
                agent_num=int(agent_num[i]), attn_type=attn_type[i])
                for j in range(depths[i])])
            cur += depths[i]

            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"pos_embed{i + 1}", pos_embed)
            setattr(self, f"pos_drop{i + 1}", pos_drop)
            setattr(self, f"block{i + 1}", block)

        # classification head
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        # init weights
        for i in range(num_stages):
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            trunc_normal_(pos_embed, std=.02)
        # trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        # return {'pos_embed', 'cls_token'} # has pos_embed may be better
        return {'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def _get_pos_embed(self, pos_embed, patch_embed, H, W):
        if H * W == self.patch_embed1.num_patches:
            return pos_embed
        else:
            return F.interpolate(
                pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
                size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)

    def forward_features(self, x):
        B = x.shape[0]

        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            pos_drop = getattr(self, f"pos_drop{i + 1}")
            block = getattr(self, f"block{i + 1}")
            x, (H, W) = patch_embed(x)

            pos_embed = self._get_pos_embed(pos_embed, patch_embed, H, W)

            x = pos_drop(x + pos_embed)
            for blk in block:
                x = blk(x, H, W)
            if i != self.num_stages - 1:
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()

        return x.mean(dim=1)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)

        return x


def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v

    return out_dict


def agent_pvt_tiny(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


def agent_pvt_small(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
    model.default_cfg = _cfg()

    return model


def agent_pvt_medium(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


def agent_pvt_large(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/262367.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

融资项目——vue之双向数据绑定

上一篇文章中使用的v-bind是单向绑定方法,即数据改变,网页相应的视图发生改变,但是网页视图发生改变其相关联的数据不会发生改变。但是双向数据绑定不同之处在于网页视图发生改变其相关联的数据也会发生改变。Vue可以使用v-model进行双向数据…

docker-compose安装Rocketmq总结,以及如何更换mq端口

默认你已经装好了docker哈 安装docker-compose sudo curl -L https://github.com/docker/compose/releases/download/1.25.1-rc1/docker-compose-uname -s-uname -m -o /usr/local/bin/docker-composechmod x /usr/local/bin/docker-composedocker-compose --version成功打印…

4.2 克隆

一,什么是克隆? 克隆是指通过共享缓冲区来复制内容(例如,两个窗口共享相同的内容)。 克隆可用于提高性能: 可以减少所需的更新次数。 你可以在多个显示器上显示内容,但只需要更新一个缓冲区…

C# 使用MSTest进行单元测试

目录 写在前面 代码实现 执行结果 写在前面 MSTest是微软官方提供的.NET平台下的单元测试框架;可使用DataRow属性来指定数据,驱动测试用例所用到的值,连续对每个数据化进行运行测试,也可以使用DynamicData 属性来指定数据&…

服务器数据恢复-服务器断电导致linux操作系统数据丢失的数据恢复案例

linux操作系统服务器数据恢复环境: 某品牌R730服务器MD3200系列存储,linux操作系统。 服务器故障: 机房意外断电导致服务器linux操作系统部分文件丢失。 服务器数据恢复过程: 1、将故障服务器连接到北亚企安数据恢复中心备份服务器…

vue3 组合式pinia的使用 案例

需求:用户登录时,结合session实现永久化存贮个人信息 import { computed, ref } from vue import { defineStore } from pinia import { logOn } from /service// sessionStorage的封装 import { SET_USER_TOKEN, STORAGE_GET, STORAGE_SET } from /util…

【PyTorch】代码学习

文章目录 直接定义nn.Sequential(), 然后append(),最后直接net(),少写很多forward,适合直连式网络 直接定义nn.Sequential(), 然后append(),最后直接net(),少写很多forward,适合直连式网络 代码来源:https://github.com/zshhans/MSD-Mixer/b…

ros2启动gazebo方式

我安装的是官方建议的gz-harxxx版本。就用这个启动 ros2 launch ros_ign_gazebo ign_gazebo.launch.py 哎我鼓捣了2个小时的东西,就这么公布出来好像有点不甘心啊,此文章全国第一个发布,没有之一

SQL指南:掌握日期函数来查询和管理数据

文章目录 1. 引言2. 建立数据库表2.1 建表语句2.2 数据插入 查询案例3.1 查询当前日期的订单3.2 查询过去一周内的订单3.3 查询明天的日期3.4 查询今年的订单3.5 查询特定月份的订单 总结 1. 引言 在数据库管理中,处理日期和时间是一项基本但重要的任务。本指南将通…

SpringCloudGateway网关处拦截并修改请求

SpringCloudGateway网关处拦截并修改请求 需求背景 老系统没有引入Token的概念,之前的租户Id拼接在请求上,有的是以Get,Param传参形式;有的是以Post,Body传参的。需要在网关层拦截请求并进行请求修改后转发到对应服务。…

Centos7在安装Graylog时新安装MongoDB报错端口不监听服务不启动无法运行启动失败

由于虚拟机服务器上需要安装Graylog需要安装MongoDB,尝试官网下载安装包,和yum安装均无法正常启动,折腾了好几天,重装了十几次,网上搜索了很多很多资料,均无法正常运行,百度上搜索各种文档&…

内网穿透的应用-Docker本地部署青龙面板并实现公网远程访问管理界面

文章目录 一、前期准备本教程环境为:Centos7,可以跑Docker的系统都可以使用。本教程使用Docker部署青龙,如何安装Docker详见: 二、安装青龙面板三、映射本地部署的青龙面板至公网四、使用固定公网地址访问本地部署的青龙面板 青龙…

【数字图像处理】实验三 图像增强

图像增强 一、实验内容: 1. 熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。 2. 熟练掌握各种图像增强的基本原理及方法。 3. 能够从深刻理解图像增强,并能够思考拓展到一定的应用领域。…

WPF组合控件TreeView+DataGrid之TreeView封装

(关注博主后,在“粉丝专栏”,可免费阅读此文) wpf的功能非常强大,很多控件都是原生的,但是要使用TreeViewDataGrid的组合,就需要我们自己去封装实现。 我们需要的效果如图所示&#x…

《代码整洁之道:程序员的职业素养》读后感

概述 工作即将满8年,如果算上2年实习的话,满打满算我已经走过将近10年的程序员编码生涯。关于Spring Boot知识点,关于微服务理论,也已经看过好几本书籍,看过十几篇技术Blog,甚至自己也写过相关技术Blog。 …

【计算机网络】TCP心跳机制、TCP粘包问题

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 更多计算机网络知识专栏&#xff1a;计算机网络&#x1f525; 给大家跳段…

案例125:基于微信小程序的个人健康数据管理系统的设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

Nginx快速入门:nginx各类转发、代理配置详解|location、proxy_pass参数详解(五)

0. 引言 咱们上节讲解了nginx的负载均衡配置&#xff0c;但是还有很多其他的转发情况&#xff0c;包括不同路径转发至不同的业务服务&#xff0c;通配符识别路径转发等。 今天一起来学习nginx的转发配置 1. location模块的匹配模式 首先我们要了解nginx进行转发代理的核心在…

vue项目npm run build报错npm ERR! missing script: build(已解决)

vue项目npm run build报错npm ERR! missing script: build&#xff08;已解决&#xff09; 错误描述&#xff1a; 今天准备打包vue项目上线是出现下列错误&#xff1a; 找了很多解决方法都不行&#xff0c;最后打开自己的package.json文件发现&#xff1a;build后面多了个&a…

stable diffusion工作原理

目录 序言stable diffusion能做什么扩散模型正向扩散逆向扩散 如何训练逆向扩散 Stable Diffusion模型潜在扩散模型变分自动编码器图像分辨率图像放大为什么潜在空间可能存在&#xff1f;在潜在空间中的逆向扩散什么是 VAE 文件&#xff1f; 条件化(conditioning)文本条件化&am…