RAG实战案例:如何基于 LangChain 实现智能检索生成系统

在人工智能领域,如何有效结合大型语言模型(LLM)的常识性知识与特定的专有数据,一直是业界探索的热点。微调(Fine-tuning)与检索增强生成(Retrieval-Augmented Generation,简称RAG)两种方法各有千秋,且都对此问题有着不可忽视的贡献。

本文将重点介绍RAG的理论基础,并展示如何利用LangChain、GPT大模型以及Weaviate矢量数据库搭建一个简易的RAG流程。

什么是检索增强生成

检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。

通过从更多数据源添加背景信息,以及通过训练来补充 LLM 的原始知识库,检索增强生成能够提高搜索体验的相关性。这能够改善大型语言模型的输出,但又无需重新训练模型。额外信息源的范围很广,从训练 LLM 时并未用到的互联网上的新信息,到专有商业背景信息,或者属于企业的机密内部文档,都会包含在内。

RAG 对于诸如回答问题和内容生成等任务,具有极大价值,因为它能支持生成式 AI 系统使用外部信息源生成更准确且更符合语境的回答。它会实施搜索检索方法(通常是语义搜索或混合搜索)来回应用户的意图并提供更相关的结果。

但问题在于,尽管最先进的LLM经过大量数据训练,拥有广泛的常识性知识,但在需要生成训练数据之外的知识时,如最新、专有或特定领域信息时,LLM可能会出现不准确的情况。以下就是一个典型的例子:

问题:最新的华为Mate手机有哪些创新功能?

回答:抱歉,但我无法访问实时信息,我的知识只更新到2023年初。因此,如果华为Mate系列手机在那之后发布了新的型号或功能,我将无法为您提供具体信息。为了获取最新信息,我建议您查看最新的新闻资源或华为的官方声明。

因此,如何将LLM的常识与其他背景知识有效结合,以生成更准确、更符合实际情况的答案,成为了一个关键问题。这样才能帮助 LLM 生成更准确、更符合语境的补全,同时减少幻觉。

解决方案

传统上,我们通过微调来使神经网络适应特定领域或信息。这种方法虽然有效,但同时也存在计算资源消耗大、成本高昂且技术要求高等问题。因此,灵活适应不断变化的信息成为了一个挑战。

2020年,Lewis 等人在论文《知识密集型 NLP 任务的检索增强生成》(Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks) [4] 中,提出了一种更为灵活的技术——检索增强生成(Retrieval-Augmented Generation,RAG)。该研究将生成模型与检索模块结合起来,能够从易于更新的外部知识源中获取额外信息。

用一个简单的比喻来说, RAG 对大语言模型(Large Language Model,LLM)的作用,就像开卷考试对学生一样。在开卷考试中,学生可以带着参考资料进场,比如教科书或笔记,用来查找解答问题所需的相关信息。开卷考试的核心在于考察学生的推理能力,而非对具体信息的记忆能力。

同样地,在 RAG 中,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,具体分为两种:

  • 参数化知识(Parametric knowledge): 模型在训练过程中学习得到的,隐式地储存在神经网络的权重中。
  • 非参数化知识(Non-parametric knowledge): 存储在外部知识源,例如向量数据库中。

(顺便提一下,这个贴切的比喻并非我首创,最早是在 Kaggle 的 LLM 科学考试竞赛中,由 JJ 提出的。)

下面是 RAG 工作流程的示意图:

检索增强生成的工作流程

  1. 检索: 首先,我们需要进行的是检索过程。在这个阶段,我们利用用户的查询内容,从外部知识源获取相关信息。具体来说,就是将用户的查询通过嵌入模型转化为向量,这样就可以与向量数据库中的其他上下文信息进行比对。通过这种相似性搜索,我们可以找到向量数据库中最匹配的前k个数据。
  2. 增强:接下来,我们进入增强阶段。在这个阶段,我们将用户的查询和检索到的额外信息一起嵌入到一个预设的提示模板中。这个过程的目的是为了提供更丰富、更具上下文的信息,以便于后续的生成过程
  3. 生成: 最后,我们进行生成过程。在这个阶段,我们将经过检索增强的提示内容输入到大语言模型(LLM)中,以生成所需的输出。这个过程是RAG的核心,它利用了LLM的强大生成能力,结合了前两个阶段的信息,生成了准确、丰富且与上下文相关的输出。

在大语言模型(LLM)的应用中,检索增强生成(RAG)的工作流程是一个结构化的过程,它通过检索、增强和生成三个阶段,使得大语言模型(LLM)能够更好地理解和响应用户的查询,提供更准确、更具上下文的输出。

基于 LangChain 实现 RAG

今天我们来一起解读如何利用Python、OpenAI的大型语言模型(LLM)、Weaviate向量数据库以及OpenAI的嵌入模型,通过LangChain构建一个RAG系统。以下是步骤的简明扼要的概述:

首先,我们需要做的是环境准备工作。确保您的环境中已经安装了以下Python库:

  • LangChain:负责整个流程的编排。
  • OpenAI:提供嵌入模型和LLM服务。
  • Weaviate-Client:用于操作向量数据库。

同时,您需要在项目根目录下的.env文件中配置好环境变量。为了获取OpenAI的API密钥,您需要先注册OpenAI账户,并在API密钥页面生成新的密钥。

!pip install langchain openai weaviate-client

另外,你需要在项目的根目录下的 .env 文件中设置相关的环境变量。要获取 OpenAI 的 API 密钥,你需要注册 OpenAI 账户,并在 API 密钥 页面中选择“创建新的密钥”。

OPENAI_API_KEY="<YOUR_OPENAI_API_KEY>"

完成这些设置后,运行下面的命令来加载你所设置的环境变量。

import dotenv
dotenv.load_dotenv()

准备步骤

首先,我们需要建立一个向量数据库。这个数据库将作为我们的外部知识源,包含了所有必要的额外信息。为了填充这个数据库,我们需要遵循以下步骤:

收集数据并将其加载进系统

在这个阶段,我们首先需要收集并加载数据。这里以《华为新款手机有什么功能_2023华为手机上市新机型》为例,我们可以利用 LangChain 提供的众多 DocumentLoader 之一来加载这些数据。这里的 Document 是一个包含文本和元数据的字典,为了加载文本,我们可以使用 LangChain 的 TextLoader 来加载文本。

import requests
from langchain.document_loaders import TextLoader

url = "https://myzhengyuan.com/post/93853.html"
res = requests.get(url)
with open("93853.html", "w") as f:
    f.write(res.text)

loader = TextLoader('./93853.html')
documents = loader.load()

对文档进行分块处理

由于原始状态下的 Document 可能过长,无法适应大语言模型(LLM)的上下文窗口,所以我们需要将其分成更小的部分。LangChain 内置了许多用于此目的的文本分割器。在这个简单的示例中,我们可以使用CharacterTextSplitter,设置chunk_size约为500和chunk_overlap约为50,以保持块之间的文本连续性。

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = text_splitter.split_documents(documents)

对分块内容进行嵌入并存储块

最后,我们需要为每个块生成向量嵌入,并将它们与其嵌入一起存储。为了生成向量嵌入,我们可以使用OpenAI的嵌入模型。同时,我们可以使用 Weaviate 向量数据库来存储这些嵌入。通过调用.from_documents()方法,向量数据库会自动填充这些块。

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions

client = weaviate.Client(
  embedded_options = EmbeddedOptions()
)

vectorstore = Weaviate.from_documents(
    client = client,    
    documents = chunks,
    embedding = OpenAIEmbeddings(),
    by_text = False
)

第 1 步:检索

首先,我们需要在向量数据库中填充数据,然后定义一个检索器组件。这个检索器会根据用户的查询和嵌入块之间的语义相似度,为我们提供额外的上下文信息。

retriever = vectorstore.as_retriever()

第 2 步:增强

接下来,我们需要使用检索到的上下文信息来增强我们的提示。为此,我们需要准备一个提示模板。在LangChain中,我们可以使用ChatPromptTemplate来创建一个提示模板。这个模板会告诉LLM如何使用检索到的上下文来回答问题。如果LLM不知道答案,它会说出“我不知道”。我们要求LLM的答案尽可能简洁,最多使用三个句子。在Python中,我们可以这样实现:

from langchain.prompts import ChatPromptTemplate

template = """你是问答任务助手。使用以下检索到的上下文片段来回答问题。如果你不知道答案,就说你不知道。最多使用三个句子,保持答案简洁。
Question: {question} 
Context: {context} 
Answer:
"""
prompt = ChatPromptTemplate.from_template(template)

print(prompt)

第三步:生成

最后,我们需要构建一个RAG流程链条,将检索器、提示模板和LLM连接起来。定义好RAG链后,我们就可以调用它进行生成。

from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser

llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

rag_chain = (
    {"context": retriever,  "question": RunnablePassthrough()} 
    | prompt 
    | llm
    | StrOutputParser() 
)

query = "最新的华为Mate手机有哪些创新功能?"
rag_chain.invoke(query)

输出结果如下:

华为Mate手机的创新功能包括:
1. 先进的处理器和大内存,适合处理复杂任务和大型应用程序
2. 高像素的多摄像头系统,能拍摄高质量照片和视频
3. 支持快速充电和无线充电技术
4. 5G网络支持
5. 流线型设计的双曲面屏幕、高刷新率和高清分辨率
6. 搭载最新的麒麟芯片,提供更快的运行速度和更高的能效比
7. 超级感知影像系统、超级快充技术、智能语音助手等功能

2023年华为上市的新机型包括Hi畅享60S、nova 11 SE、Mate 60系列、nova 12系列等。2022年上市的新机型有mate50、mate50Pro、mate50Pro+和Mate50 RS。

我们可以看到基于这个示例生成的 RAG 管道,如下所示:

总结

本文详细介绍了检索增强生成(RAG)的概念,并演示了如何利用Python实现RAG流程,该流程利用了OpenAI的大型语言模型(LLM)、Weaviate矢量数据库和OpenAI嵌入模型,并通过LangChain进行编排。通过本文的介绍,我们可以看到RAG为解决LLM在处理特定、最新和专有信息方面的不足提供了一个有效且灵活的方法。RAG的出现为大型语言模型提供了额外的、来自外部知识源的信息,使其在生成更精确、更贴合上下文的答案的同时,也能有效减少产生误导性信息的可能。通过Python的实际示例,读者可以清晰地了解RAG的工作原理和实际应用。

References

[1]. Retrieval-augmented generation (RAG)

https://python.langchain.com/docs/use_cases/question_answering/

[2]. Retrieval Augmented Generation (RAG): The Solution to GenAI Hallucinations

https://www.pinecone.io/learn/retrieval-augmented-generation/

[3]. LangChain for LLM Application Development

https://www.deeplearning.ai/short-courses/langchain-for-llm-application-development/

[4]. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

https://arxiv.org/abs/2005.11401

[5]. Open Book LLM Science Exam

https://www.kaggle.com/code/jjinho/open-book-llm-science-exam

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/262081.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

5. 行为模式 - 备忘录模式

亦称&#xff1a; 快照、Snapshot、Memento 意图 备忘录模式是一种行为设计模式&#xff0c; 允许在不暴露对象实现细节的情况下保存和恢复对象之前的状态。 问题 假如你正在开发一款文字编辑器应用程序。 除了简单的文字编辑功能外&#xff0c; 编辑器中还要有设置文本格式和…

【Docker】基于华为 openEuler 应用 Docker 镜像体积压缩

书接 openEuler 系列文章&#xff08;可以翻看测试系列&#xff09;&#xff0c;本次跟大家说说如何将 Java 包轻量化地构建到 openEuler 镜像中且保持镜像内操作系统是全补丁状态。 之前我们都是使用现成的 jdk 镜像进行构建的&#xff0c;如下图&#xff1a; FROM ibm-seme…

Docker安装(CentOS)+简单使用

Docker安装(CentOS) 一键卸载旧的 sudo yum remove docker* 一行代码(自动安装) 使用官方安装脚本 curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 启动 docker并查看状态 运行镜像 hello-world docker run hello-world 简单使用 使用 docker run …

第八节TypeScript 函数

1、函数的定义 函数就是包裹在花括号中的代码块&#xff0c;前面使用关键字function。 语法&#xff1a; function function_name() {// 执行代码 } 实例&#xff1a; function test() { // 函数定义console.log("我就是创建的名称为test的函数") } 2、调用…

论文阅读——RS DINO

RS DINO: A Novel Panoptic Segmentation Algorithm for High Resolution Remote Sensing Images 基于MASKDINO模型&#xff0c;加了两个模块&#xff1a; BAM&#xff1a;Batch Attention Module 遥感图像切分的时候把一个建筑物整体比如飞机场切分到不同图片中&#xff0c;…

五分钟学完k-means

聚类算法有很多种&#xff0c;K-Means 是聚类算法中的最常用的一种&#xff0c;算法最大的特点是简单&#xff0c;好理解&#xff0c;运算速度快&#xff0c;但是只能应用于连续型的数据&#xff0c;并且一定要在聚类前需要手工指定要分成几类。 K-Means 聚类算法的大致意思就…

Ubuntu18.04、CUDA11.1安装TensorRT

最近想试试推理加速&#xff0c;因为跑的预测有点慢&#xff0c;一开始是打算从数据处理上实现&#xff0c;采用并行数据处理&#xff0c;但是这个有所难度&#xff0c;而且有几张显卡可用&#xff0c;就想着怎么把显卡利用上。而且了解到推理加速后&#xff0c;就先尝试一下看…

1.0.0 IGP高级特性简要介绍(ISIS)

ISIS高级特性 1.LSP快速扩散 ​ 正常情况下&#xff0c;当IS-IS路由器收到其它路由器发来的LSP时&#xff0c;如果此LSP比本地LSDB中相应的LSP要新&#xff0c;则更新LSDB中的LSP&#xff0c;并用一个定时器定期将LSDB内已更新的LSP扩散出去。 IS-IS如何识别LSP的新旧&#x…

[每周一更]-(第35期):为何要用ChatGPT?

为何要用ChatGPT&#xff1f;因为她是工具&#xff0c;而人类需要工具&#xff1b; AI只要没有自主目的性的话就是工具&#xff0c;需要怕的是使用这个工具的人。掌握了提问的艺术&#xff0c;更好利用AI帮助我们完成目标&#xff1b; 最开始2022/12/07 开始注册ChatGPT使用&a…

【C++】开源:libmodbus通信协议库配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍libmodbus通信协议库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#x…

PDF控件Spire.PDF for .NET【安全】演示:将加密或解密 PDF 文件

当涉及到在 Internet 上共享机密文档时&#xff0c;PDF 加密是一项至关重要的任务。通过使用强密码加密 PDF 文件&#xff0c;您可以保护文件数据免遭未经授权的人员访问。在某些情况下&#xff0c;可能还需要删除密码才能公开文档。在本文中&#xff0c;您将了解如何使用Spire…

ChatGPT一周年:开源语言大模型的冲击

自2022年末发布后&#xff0c;ChatGPT给人工智能的研究和商业领域带来了巨大变革。通过有监督微调和人类反馈的强化学习&#xff0c;模型可以回答人类问题&#xff0c;并在广泛的任务范围内遵循指令。在获得这一成功之后&#xff0c;人们对LLM的兴趣不断增加&#xff0c;新的LL…

mac电池最大充电限制 AlDente Pro中文 for Mac

热保护&#xff1a;在电池温度较高时为电池充电会导致电池老化更快。启用热保护后&#xff0c;当电池温度过高时&#xff0c;充电将自动停止。 航行模式&#xff1a;通常情况下&#xff0c;即使激活了最大电池充电&#xff0c;您的 MacBooks 电池也会始终稍微充电和放电以保持所…

linux 驱动——私有数据

文章目录 linux 驱动中的私有数据container_of驱动程序数据结构定义 应用程序模块使用 linux 驱动中的私有数据 前面的程序中&#xff0c;都只申请了一个从设备号&#xff0c;这里使用 alloc_chrdev_region 分配两个设备号&#xff0c;这两个设备共用 ops 方法。 所以需要在 …

案例101:基于微信小程序的停车共享小程序

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

基于Java+Springboot+Vue+elememt宠物用品商城系统设计实现

基于JavaSpringbootVueelememt宠物用品商城系统设计实现 &#x1f345; 作者主页 程序开发 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; 文章目录 基于JavaSpringbootVueelememt宠物用品商城系统设计实…

CGAL的3D Alpha Shapes

假设我们给定一个二维或三维的点集S&#xff0c;我们希望得到类似“这些点形成的形状”的东西。这是一个相当模糊的概念&#xff0c;可能有许多可能的解释&#xff0c;阿尔法形状就是其中之一。阿尔法形状可用于从密集的无组织数据点集进行形状重建。事实上&#xff0c;阿尔法形…

跑马灯实验

4.1 实验目的 1.熟悉龙芯实验开发板、熟悉 VIVADO 的编译环境及操作流程。 2.掌握 FPGA 编程入门知识、利用门级方法实现简单逻辑电路。 3.继续学习 Verilog HDL 语法、掌握跑马灯的设计、熟悉调试过程。 4.2 实验原理及芯片 本次实验用 Verilog HDL 语言来描述 6 个不同的 …

【Spring Security】打造安全无忧的Web应用--进阶篇

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Spring Security的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.导入相关配置 1.pom 2.ym…

redis基本用法学习(C#调用NRedisStack操作redis)

redis官网文档中推荐C#中使用NRedisStack包连接并操作redis&#xff0c;本文学习C#调用NRedisStack操作redis的基本方式。   新建Winform项目&#xff0c;在Nuget包管理器中搜索并安装NRedisStack包&#xff0c;如下图所示&#xff1a; 主要调用StackExchange.Redis命名空间下…