SQL面试题挑战01:打折日期交叉问题

目录

  • 问题:
  • SQL解答:
    • 第一种方式:
    • 第二种方式:

问题:

如下为某平台的商品促销数据,字段含义分别为品牌名称、打折开始日期、打折结束日期,现在要计算每个品牌的打折销售天数(注意其中的交叉日期)。比如vivo的打折销售天数就为17天。


brand   start_date  end_date
xiaomi  2021-06-05  2021-06-09
xiaomi  2021-06-11  2021-06-21
vivo    2021-06-05  2021-06-15
vivo    2021-06-09  2021-06-21 
honor   2021-06-05  2021-06-21 
honor   2021-06-09  2021-06-15
redmi   2021-06-17  2021-06-26
huawei  2021-06-05  2021-06-26
huawei  2021-06-09  2021-06-15
huawei  2021-06-17  2021-06-21

SQL解答:

第一种方式:

根据每个品牌的促销开始时间和结束时间可以得到品牌每天促销的明细数据,然后,按品牌分组,日期去重就可以得到每个品牌打折销售天数。但此种方式适合数据量不大的情况,因为该方法会让数据膨胀的很厉害。

with temp as (
        select 'xiaomi' as brand   ,'2021-06-05' as start_date,'2021-06-09' as end_date
        union all
        select 'xiaomi' as brand   ,'2021-06-11' as start_date,'2021-06-21' as end_date
        union all
        select 'vivo' as brand   ,'2021-06-05' as start_date,'2021-06-15' as end_date
        union all
        select 'vivo' as brand   ,'2021-06-09' as start_date,'2021-06-21' as end_date
        union all 
        select 'honor' as brand  ,'2021-06-05' as start_date,'2021-06-21' as end_date
        union all 
        select 'honor' as brand  ,'2021-06-09' as start_date,'2021-06-15' as end_date
        union all
        select 'honor' as brand  ,'2021-06-17' as start_date,'2021-06-26' as end_date
        union all
        select 'huawei' as brand ,'2021-06-05' as start_date,'2021-06-26' as end_date
        union all
        select 'huawei' as brand ,'2021-06-09' as start_date,'2021-06-15' as end_date
        union all
        select 'huawei' as brand ,'2021-06-17' as start_date,'2021-06-21' as end_date
)

select
brand
,count(distinct dt) as dts
from (
select
    brand
    ,start_date
    ,end_date
    ,date_add(start_date,tmp.col_idx) as dt
from temp
lateral VIEW posexplode(split(repeat("#,",datediff(date(end_date), date(start_date))),'#')) tmp AS col_idx,col_val
) tt 
group by brand
;

备注:补充repeat函数

select  repeat("#,",datediff('2023-12-18','2023-12-01'))	
#,#,#,#,#,#,#,#,#,#,#,#,#,#,#,#,#,

select  split(repeat("#,",datediff('2023-12-18','2023-12-01')),'#')
["",",",",",",",",",",",",",",",",",",",",",",",",",",",",",",",",",","]

第二种方式:

第二种方式规避数据膨胀的情况,经过适当的处理,消除日期交叉的情况

with temp as (
        select 'xiaomi' as brand   ,'2021-06-05' as start_date,'2021-06-09' as end_date
        union all
        select 'xiaomi' as brand   ,'2021-06-11' as start_date,'2021-06-21' as end_date
        union all
        select 'vivo' as brand   ,'2021-06-05' as start_date,'2021-06-15' as end_date
        union all
        select 'vivo' as brand   ,'2021-06-09' as start_date,'2021-06-21' as end_date
        union all 
        select 'honor' as brand  ,'2021-06-05' as start_date,'2021-06-21' as end_date
        union all 
        select 'honor' as brand  ,'2021-06-09' as start_date,'2021-06-15' as end_date
        union all
        select 'honor' as brand  ,'2021-06-17' as start_date,'2021-06-26' as end_date
        union all
        select 'huawei' as brand ,'2021-06-05' as start_date,'2021-06-26' as end_date
        union all
        select 'huawei' as brand ,'2021-06-09' as start_date,'2021-06-15' as end_date
        union all
        select 'huawei' as brand ,'2021-06-17' as start_date,'2021-06-21' as end_date
)

select
brand
,sum(datediff(date(end_date),date(start_date))+1)
from
(
select
    brand
    ,case
    when start_date<=max_date then date_add(date(max_date),1)
    else start_date end
    as start_date
    ,end_date
    from(
        select
        brand
        ,start_date
        ,end_date
        ,max(end_date) over(partition by brand order by start_date rows between UNBOUNDED PRECEDING and 1 PRECEDING ) as max_date  --获取同一品牌内按开始日期排序后,取第一行到前一行的最大结束时间
        from temp
    )t1
    )t1
where end_date>=start_date
group by brand
;

补充:rows 和range的区别
在 SQL 中,rows 和 range 是两种不同的窗口帧(window frame)类型,它们定义了窗口函数的计算范围。
rows 窗口帧是基于行的,它使用一组相对于当前行的行号来定义窗口函数的计算范围。rows 窗口帧可以指定 UNBOUNDED PRECEDING、n PRECEDING、CURRENT ROW、n FOLLOWING 和 UNBOUNDED FOLLOWING 五种窗口帧范围。
range 窗口帧是基于值的,它使用一组相对于当前行的数值范围来定义窗口函数的计算范围。range 窗口帧可以指定 UNBOUNDED PRECEDING、n PRECEDING、CURRENT ROW、n FOLLOWING 和 UNBOUNDED FOLLOWING 五种窗口帧范围。
在这里插入图片描述
注释:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点
UNBOUNDED PRECEDING 表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点

一般来说,rows 和 range 窗口帧都可以用于定义窗口函数的计算范围,但是它们有一些不同的特点:rows 窗口帧是基于行的,它使用一组相对于当前行的行号来定义窗口函数的计算范围。因此,rows 窗口帧适用于基于行号的计算,例如计算排名、移动平均等。range 窗口帧是基于值的,它使用一组相对于当前行的数值范围来定义窗口函数的计算范围。因此,range 窗口帧适用于基于数值范围的计算,例如计算累计和、百分比等。

一般情况下,rows 窗口帧比 range 窗口帧更常用,因为基于行号的计算更加常见。但是在某些特殊情况下,range 窗口帧也可以使用。
例如:当窗口函数的计算范围基于连续的数值范围时,可以使用 range 窗口帧。例如,计算累计和、计算百分比等。当窗口函数的计算范围包含重复的值时,可以使用 range 窗口帧来避免重复计算。例如,计算连续相同值的最大长度、计算某个值在窗口中的出现次数等。
需要注意的是,对于一些特殊的窗口函数,可能只能使用 rows 窗口帧,例如计算排名、计算移动平均等。因此,在使用 range 窗口帧时,需要根据具体的需求和窗口函数的特性选择合适的窗口帧类型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/260839.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【yolov8系列】 yolov8 目标检测的模型剪枝

前言 最近在实现yolov8的剪枝&#xff0c;所以有找相关的工作作为参考&#xff0c;用以完成该项工作。 先细读了 Torch-Pruning&#xff0c;个人简单记录了下 【剪枝】torch-pruning的基本使用&#xff0c;有框架完成的对网络所有结构都自适应剪枝是最佳的&#xff0c;但这里没…

Redis 系统性总结看这一篇就够了

Redis&#xff08;Remote Dictionary Server )&#xff0c;即远程字典服务&#xff0c;是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库&#xff0c;并提供多种语言的API。 之前在公司一直忙于使用&#xff0c;很少做系统性的总结&a…

工具系列:PyCaret介绍_单变量时间序列代码示例

&#x1f44b; 工具系列&#xff1a;PyCaret介绍_单变量时间序列代码示例 PyCaret是一个开源的、低代码的Python机器学习库&#xff0c;可以自动化机器学习工作流程。它是一个端到端的机器学习和模型管理工具&#xff0c;可以大大加快实验周期&#xff0c;提高工作效率。 与其…

用C#也能做机器学习?

前言✨ 说到机器学习&#xff0c;大家可能都不陌生&#xff0c;但是用C#来做机器学习&#xff0c;可能很多人还第一次听说。其实在C#中基于ML.NET也是可以做机器学习的&#xff0c;这种方式比较适合.NET程序员在项目中集成机器学习模型&#xff0c;不太适合专门学习机器学习&a…

从Gitee克隆项目、启动方法

从gitee克隆VUE项目到本地后&#xff0c;不能直接运行&#xff0c;需要进行npm install安装node_modules文件夹里面的内容&#xff0c;因为在git上传的时候&#xff0c;一般都会过滤到node_modules中的依赖文件。 安装依赖以后&#xff0c;启动通过npm run serve启动项目出错。…

迪文屏开发保姆级教程——页面键盘

迪文屏页面键盘保姆级教程。 本篇文章主要介绍了在DGBUS平台上使用页面键盘的步骤。 迪文屏官方开发指南PDF&#xff1a;&#xff08;不方便下载的私聊我发给你&#xff09; https://download.csdn.net/download/qq_21370051/88647174?spm1001.2014.3001.5503https://downloa…

一篇文章带你搞定ARCHPR的下载和使用

除了bp这款爆破神器之外&#xff0c;另外还有一款ARCHPR的字典爆破神器&#xff0c;好处是很方便&#xff0c;而且爆破速度贼快 链接&#xff1a;https://pan.baidu.com/s/1-Ewx2JpZ-o5PunlfkRupYg 提取码&#xff1a;sg51 这里直接给大家安排了&#xff0c;自取就好 攻击的…

常用的电源芯片有哪些?怎么分类

科技的发展也带动了电源的发展&#xff0c;因此需要更多的电源管理芯片。说到电源管理芯片&#xff0c;作为工程师最熟悉的芯片之一。所谓电源管理芯片&#xff0c;就是负责电子设备系统中电能的转换、分配、检测等电能管理的芯片。主要负责识别CPU电源范围&#xff0c;产生相应…

【疑问】学前端是不是已经找不到工作了?深度回复“前端已死论”。

随着人工智能和低代码的崛起&#xff0c;“前端已死”的声音逐渐兴起。前端已死&#xff1f;尊嘟假嘟&#xff1f;快来发表你的看法吧&#xff01; 文章目录 一、为什么会出现“前端已死”的言论技术发展框架和工具的泛滥市场饱和全栈开发的兴起 二、你如何看待“前端已死”技术…

1.CentOS7网络配置

CentOS7网络配置 查看网络配置信息 ip addr 或者 ifconfig 修改网卡配置信息 vim /etc/sysconfig/network-scripts/ifcfg-ens192 设备类型&#xff1a;TYPEEthernet地址分配模式&#xff1a;BOOTPROTOstatic网卡名称&#xff1a;NAMEens192是否启动&#xff1a;ONBOOTye…

【halcon深度学习之那些封装好的库函数】create_dl_preprocess_param_from_model

函数简介 create_dl_preprocess_param_from_model 是一个用于创建深度学习模型预处理参数的程序。以下是该程序的详细介绍&#xff1a; 参数: DLModelHandle (输入): 用于预处理的深度学习模型的句柄。 NormalizationType (输入): 预处理时的归一化类型参数。可能的取值包括…

手机怎么设置每年公历或农历生日提醒?生日提醒设置小妙招

生日是一个人在一年中比较特殊的日子之一&#xff0c;人们通常希望能够在这一天得到亲朋好友的祝福和庆祝。然而&#xff0c;随着人们生活节奏的加快&#xff0c;很多人表示自己很容易忘记他人的生日&#xff0c;导致不能够及时送出祝福和礼物。如果经常忘记亲朋好友的生日&…

安防视频融合云平台/智慧监控平台EasyCVR如何添加验证码调用接口?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

Seata1.4.2分布式事务搭建部署【Spring cloud Alibaba】

包下载 https://github.com/apache/incubator-seata/releases下载并上传到服务器 //解压 tar -zxvf seata-server-1.4.2.tar.gz创建Seata的数据库及表&#xff0c;地址&#xff1a;https://github.com/seata/seata/tree/develop/script/server 根据数据类型复制相应的sql&…

工具系列:PyCaret介绍_多分类代码示例

&#x1f44b; 工具系列&#xff1a;PyCaret介绍_多分类代码示例 PyCaret 介绍 PyCaret是一个开源的、低代码的Python机器学习库&#xff0c;可以自动化机器学习工作流程。它是一个端到端的机器学习和模型管理工具&#xff0c;可以大大加快实验周期并提高生产效率。 与其他开…

验证码:防范官网恶意爬虫攻击,保障用户隐私安全

网站需要采取措施防止非法注册和登录&#xff0c;验证码是有效的防护措施之一。攻击者通常会使用自动化工具批量注册网站账号&#xff0c;以进行垃圾邮件发送、刷量等恶意活动。验证码可以有效阻止这些自动化工具&#xff0c;有效防止恶意程序或人员批量注册和登录网站。恶意程…

【bug日记】如何切换jdk版本,如何解决java和javac版本不一致

背景 今天在安装jenkins后&#xff0c;使用java运行war包的时候&#xff0c;提示jdk1.8版本太低&#xff0c;需要提高版本&#xff0c;所以就需要切换jdk版本 解决 在用户变量中&#xff0c;首先更改了JAVA_HOME的地址为17的目录&#xff0c;发现javac的版本改为17了&#x…

高防服务器防御靠谱吗?

​  随着互联网的普及和信息技术的不断发展&#xff0c;网络安全问题日益突出。高防服务器作为一种专业的网络安全设备&#xff0c;在防御网络攻击方面扮演着越来越重要的角色。然而&#xff0c;高防服务器是否靠谱&#xff0c;是否能够有效地防御各种网络攻击&#xff0c;一…

人工智能的发展之路:时间节点、问题与解决办法的全景解析

导言 人工智能的发展历程充满了里程碑式的事件&#xff0c;从早期的概念到今天的广泛应用&#xff0c;每个时间节点都伴随着独特的挑战和创新。本文将详细描述每个关键时间节点的事件&#xff0c;探讨存在的问题、解决办法&#xff0c;以及不同阶段之间的联系。 1. 195…

mysql:查看线程缓存中的线程数量

使用命令show global status like Threads_cached;可以查看线程缓存中的线程数量。 例如&#xff0c;查询线程缓存中的线程数量如下&#xff1a; 然后启动应用程序&#xff0c;使用连接&#xff0c;查询如下&#xff1a; 由查询结果可以看到&#xff0c;线程缓存中的线程数量…