智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.水基湍流算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用水基湍流算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.水基湍流算法

水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889
水基湍流算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


水基湍流算法参数如下:

%% 设定水基湍流优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明水基湍流算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/260434.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基本shell功能实现(exec系列程序替换函数练习)

shell 功能描述思路介绍1.实现常驻进程功能2.实现命令读取功能3. 实现命令解析功能4.实现子进程执行命令功能5.完善功能 补充内容让父进程运行内置命令实现子进程能够获得父进程的环境变量功能(export命令)shell实现重定向功能 全部代码如下:…

CentOS7 安装 DockerCompose

目录 一、安装Docker 二、安装步骤 2.1 卸载 2.2 安装docker 2.3 启动docker 2.4 配置镜像加速器 一、安装Docker Docker 分为 CE 和 EE 两大版本。 CE 即社区版(免费,支持周期7个月)EE 即企业版强调安全,付费使用,支持周期 24 个月…

Linux之进程(五)(进程控制)

目录 一、进程创建 1、fork函数创建进程 2、fork函数的返回值 3、fork常规用法 4、fork调用失败的原因 二、进程终止 1、进程终止的方式 2、进程退出码 3、进程的退出方法 三、进程等待 1、进程等待的必要性 2、wait函数 3、waitpid函数 四、进程程序替换 1、概念…

Java如何将中文转化为拼音

Java中可以使用第三方库pinyin4j来实现中文转拼音。 首先&#xff0c;需要引入pinyin4j的jar包&#xff0c;可以在pinyin4j的官方网站&#xff08;http://pinyin4j.sourceforge.net/&#xff09;下载&#xff0c;也可以通过Maven引入。 Maven引入依赖&#xff1a; <depend…

aws配置以及下载 spaceNet6 数据集

一&#xff1a;注册亚马逊账号 注册的时候&#xff0c;唯一需要注意的是信用卡绑定&#xff0c;这个可以去淘宝买&#xff0c;搜索aws匿名卡。 注册完记得点击登录&#xff0c;记录一下自己的账户ID哦&#xff01; 二&#xff1a;登录自己的aws账号 2.1 首先创建一个用户 首…

数字化指南:数据可视化助力网店腾飞

数据可视化对于网店经营具有重要意义。它不仅仅是一种呈现数据的方式&#xff0c;更是提升网店运营效率和业绩的有力工具。下面我就以可视化从业者的角度&#xff0c;简单聊聊数据可视化能够给网店经营带来的帮助。 在网店经营中&#xff0c;数据可视化能够带来多方面的帮助。…

【PHP入门】2.2 流程控制

-流程控制- 流程控制&#xff1a;代码执行的方向 2.2.1控制分类 顺序结构&#xff1a;代码从上往下&#xff0c;顺序执行。&#xff08;代码执行的最基本结构&#xff09; 分支结构&#xff1a;给定一个条件&#xff0c;同时有多种可执行代码&#xff08;块&#xff09;&am…

基于MLP完成CIFAR-10数据集和UCI wine数据集的分类

基于MLP完成CIFAR-10数据集和UCI wine数据集的分类&#xff0c;使用到了sklearn和tensorflow&#xff0c;并对图片分类进行了数据可视化展示 数据集介绍 UCI wine数据集&#xff1a; http://archive.ics.uci.edu/dataset/109/wine 这些数据是对意大利同一地区种植的葡萄酒进…

Ubuntu 常用命令之 echo 命令用法介绍

echo 是一个在 Ubuntu 系统下常用的命令&#xff0c;主要用于在终端输出字符串或者变量。 echo 的基本语法 echo [option] [string]echo 命令的参数包括 -n&#xff1a;不输出结尾的换行符。-e&#xff1a;启用反斜杠转义字符。-E&#xff1a;禁用反斜杠转义&#xff08;这是…

【论文解读】Efficient SAO Coding Algorithm for x265 Encoder

时间&#xff1a;2015年 级别&#xff1a;IEEE 机构&#xff1a;上海交通大学 摘要 x265是一款开源的HEVC编码器&#xff0c;采用了多种优化技术&#xff0c;具有较快的编码速度和优良的编码性能。作为HEVC的一项关键技术&#xff0c;x265还采用了样本自适应偏移(sample adap…

c++ qt 模态框和阻拦器 优先级 问题 修复 已解决

在c项目中。有 加载动画 和 模态框提醒的功能, 导致发生一个问题&#xff0c;有提示框的时候&#xff0c;动画也停止&#xff0c;必须点击 按钮 所有代码才能有效。 解决办法 谨慎使用 deleteLater,因为和模态框拦截有冲突, 使用 隐藏 或者 删除指针。 deleteLater 使用逻辑是 …

自动气象监测站助力生活生产

随着科技的发展&#xff0c;我们的生活和生产方式正在发生着日新月异的变化。其中&#xff0c;WX-CQ12 自动气象监测站作为一项气象监测设备&#xff0c;正在发挥着越来越重要的作用。它不仅为我们提供了更加准确、实时的天气信息&#xff0c;还为农业、交通、旅游等领域提供了…

全新「机械手」算法:辅助花式抓杯子,GTX 1650实现150fps推断

新方法结合扩散模型和强化学习&#xff0c;将抓取问题分解为「如何抓」以及「何时抓」&#xff0c;平价显卡即可实现实时交互。 手是人类与世界交互的重要部分&#xff0c;手的缺失&#xff08;如上肢残障&#xff09;会大大影响人类的正常生活。 北京大学董豪团队通过将扩散模…

stm32学习总结:4、Proteus8+STM32CubeMX+MDK仿真串口收发

stm32学习总结&#xff1a;4、Proteus8STM32CubeMXMDK仿真串口收发 文章目录 stm32学习总结&#xff1a;4、Proteus8STM32CubeMXMDK仿真串口收发一、前言二、资料收集三、STM32CubeMX配置串口1、配置开启USART12、设置usart中断优先级3、配置外设独立生成.c和.h 四、MDK串口收发…

VS ASP.Net Core项目还原Packages包到本地(解决服务器没有网无法重新生成的问题)

问题背景 ASP.Net Core MVC项目&#xff0c;无法重新生成。 现场服务器没有网,放上去的代码无法通过nuget还原包到服务器&#xff0c;导致无法编译无法运行。 解决办法 将Packages还原到本机&#xff08;有网&#xff09;&#xff0c;然后再将代码放到服务器运行。 在有网的…

内网渗透测试基础——分析域内网段划分情况及拓扑结构

内网渗透测试基础——分析域内网段划分情况及拓扑结构 ​ 掌握了内网的相关信息后&#xff0c; 渗透测试人员可以分析目标网络的结构和安全防御策略&#xff0c;获取网段信息、各部门的IP地址段&#xff0c;并尝试绘制内网的拓扑结构图。当然&#xff0c;渗透测试人员无法了解…

深入了解Java中的锁机制

目录 1. synchronized关键字 1.1 基本概念 1.2 内置锁 1.3 限制 2. ReentrantLock 2.1 概述 2.2 公平性与非公平性 2.3 条件变量 3. 读写锁&#xff08;ReadWriteLock&#xff09; 3.1 概念 3.2 适用场景 4. StampedLock 4.1 概述 4.2 乐观读与悲观读 4.3 适用场…

仓储1代电子标签接口文档

标签注册 仓储1代注册 侧面按钮连按三次&#xff0c; 注册成功&#xff1a;红灯变绿灯 查询电子标签信息接口 接口地址&#xff1a;192.168.1.200/wms/associate/getTagsMsg 请求类型&#xff1a;multipart/form-data 请求方式&#xff1a;get 接口备注&#xff1a;暂无描…

如何设计用户评论表

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 上一篇提到树形结构是非…

C++_动态二维数组的两种方法

介绍 本文主要介绍使用 动态二维数组的两种方法 (PS:仅作创建 动态二维数组参考,详细使用方法根据需求自行改变) 第一种&#xff1a;连续存储结构的 二维动态数组(需固定 列 大小&#xff0c;可通过下标访问) 缺点: 1.需要在设计二维数组前写死 列 的大小 2.空间利用率不高 优点…