知识概览
用作单点修改的线段树有4个操作:
- pushup:由子节点的信息计算父节点的信息
- build:初始化一棵树
- modify:修改一个区间
- query:查询一个区间
线段树用一维数组来存储:
- 编号是x的节点,它的父节点是,左儿子是2x,右儿子是2x+1。
线段树的应用范围如下:
- 线段树相对于树状数组,常数比较大。但是,线段树用途广泛,可以解决许多区间修改,区间查询的问题。而树状数组的本质是可以解决单点修改,区间查询前缀和的问题。
带懒标记(支持区间修改)的线段树算法见本人博客:【数据结构】线段树算法总结(区间修改)-CSDN博客【代码总结】线段树算法总结(区间修改)https://blog.csdn.net/u012181348/article/details/135120038?spm=1001.2014.3001.5501
例题展示
题目链接
1275. 最大数 - AcWing题库https://www.acwing.com/problem/content/1277/
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 200010;
int m, p;
struct Node
{
int l, r;
int v; // 区间[l, r]中的最大值
} tr[N * 4];
void pushup(int u) // 由子节点的信息,来计算父节点的信息
{
tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);
}
void build(int u, int l, int r)
{
tr[u] = {l, r};
if (l == r) return;
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}
int query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r) return tr[u].v; // 树中节点,已经被完全包含在[l, r]中了
int mid = tr[u].l + tr[u].r >> 1;
int v = 0;
if (l <= mid) v = query(u << 1, l, r);
if (r > mid) v = max(v, query(u << 1 | 1, l, r));
return v;
}
void modify(int u, int x, int v)
{
if (tr[u].l == x && tr[u].r == x) tr[u].v = v;
else
{
int mid = tr[u].l + tr[u].r >> 1;
if (x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
int main()
{
int n = 0, last = 0;
scanf("%d%d", &m, &p);
build(1, 1, m);
int x;
char op[2];
while (m--)
{
scanf("%s%d", op, &x);
if (*op == 'Q')
{
last = query(1, n - x + 1, n);
printf("%d\n", last);
}
else
{
modify(1, n + 1, ((LL)last + x) % p);
n++;
}
}
return 0;
}
题目链接
245. 你能回答这些问题吗 - AcWing题库高质量的算法题库https://www.acwing.com/problem/content/246/
题解
横跨左右子区间的最大子段和 = 左子区间的最大后缀 + 右子区间的最大前缀,需要在线段树节点中添加附加信息。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 500010;
int n, m;
int w[N];
struct Node
{
int l, r;
int sum, lmax, rmax, tmax;
} tr[N * 4];
void pushup(Node &u, Node &l, Node &r)
{
u.sum = l.sum + r.sum;
u.lmax = max(l.lmax, l.sum + r.lmax);
u.rmax = max(r.rmax, r.sum + l.rmax);
u.tmax = max(max(l.tmax, r.tmax), l.rmax + r.lmax);
}
void pushup(int u)
{
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
void build(int u, int l, int r)
{
if (l == r) tr[u] = {l, r, w[r], w[r], w[r], w[r]};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
int modify(int u, int x, int v)
{
if (tr[u].l == x && tr[u].r == x) tr[u] = {x, x, v, v, v, v};
else
{
int mid = tr[u].l + tr[u].r >> 1;
if (x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
Node query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r) return tr[u];
else
{
int mid = tr[u].l + tr[u].r >> 1;
if (r <= mid) return query(u << 1, l, r);
else if (l > mid) return query(u << 1 | 1, l, r);
else
{
auto left = query(u << 1, l, r);
auto right = query(u << 1 | 1, l, r);
Node res;
pushup(res, left, right);
return res;
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
build(1, 1, n);
int k, x, y;
while (m--)
{
scanf("%d%d%d", &k, &x, &y);
if (k == 1)
{
if (x > y) swap(x, y);
printf("%d\n", query(1, x, y).tmax);
}
else modify(1, x, y);
}
return 0;
}
参考资料
- AcWing算法提高课