MapReduce 基础实战

文章目录

  • 第1关:成绩统计
  • 第2关:文件内容合并去重


第1关:成绩统计

编程要求
使用MapReduce计算班级每个学生的最好成绩,输入文件路径为/user/test/input,请将计算后的结果输出到/user/test/output/目录下。

测试说明
输入文件在你每次点击评测的时候,平台会为你创建,无需你自己创建,只需要启动HDFS,编写java代码即可。

输入文件的数据格式如下:
张三 12
李四 13
张三 89
李四 92

依照如上格式你应该输出:

张三 89
李四 92

具体本关的预期输出请查看右侧测试集。

因为大数据实训消耗资源较大,且map/reduce运行比较耗时,所以评测时间较长,大概在60秒左右,请耐心等待。

开始你的任务吧,祝你成功!

代码示例入下:

import java.io.IOException;
import java.util.StringTokenizer;
 
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
    /********** Begin **********/
    public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        private int maxValue = 0;
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString(),"\n");
            while (itr.hasMoreTokens()) {
                String[] str = itr.nextToken().split(" ");
                String name = str[0];
                one.set(Integer.parseInt(str[1]));
                word.set(name);
                context.write(word,one);
            }
            //context.write(word,one);
        }
    }
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            int maxAge = 0;
            int age = 0;
            for (IntWritable intWritable : values) {
                maxAge = Math.max(maxAge, intWritable.get());
            }
            result.set(maxAge);
            context.write(key, result);
        }
    }
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        String inputfile = "/user/test/input";
        String outputFile = "/user/test/output/";
        FileInputFormat.addInputPath(job, new Path(inputfile));
        FileOutputFormat.setOutputPath(job, new Path(outputFile));
        job.waitForCompletion(true);
    /********** End **********/
    }
}

还需在命令行启动:

start-all.sh

在这里插入图片描述

第2关:文件内容合并去重

编程要求
接下来我们通过一个练习来巩固学习到的MapReduce知识吧。

对于两个输入文件,即文件file1和文件file2,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件file3。
为了完成文件合并去重的任务,你编写的程序要能将含有重复内容的不同文件合并到一个没有重复的整合文件,规则如下:

第一列按学号排列;
学号相同,按x,y,z排列;
输入文件路径为:/user/tmp/input/;
输出路径为:/user/tmp/output/。
注意:输入文件后台已经帮你创建好了,不需要你再重复创建。

测试说明
程序会对你编写的代码进行测试:
输入已经指定了测试文本数据:需要你的程序输出合并去重后的结果。
下面是输入文件和输出文件的一个样例供参考。

输入文件file1的样例如下:
20150101 x
20150102 y
20150103 x
20150104 y
20150105 z
20150106 x

输入文件file2的样例如下:
20150101 y
20150102 y
20150103 x
20150104 z
20150105 y

根据输入文件file1和file2合并得到的输出文件file3的样例如下:

20150101 x
20150101 y
20150102 y
20150103 x
20150104 y
20150104 z
20150105 y
20150105 z
20150106 x

开始你的任务吧,祝你成功!

示例代码如下:

import java.io.IOException;
import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Merge {
    
    /**
     * @param args
     * 对A,B两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C
     */
    //在这重载map函数,直接将输入中的value复制到输出数据的key上 注意在map方法中要抛出异常:throws IOException,InterruptedException
    /********** Begin **********/
    public static class Map extends Mapper<LongWritable, Text, Text, Text >
    {
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            String str = value.toString();
            String[] data = str.split(" ");
            Text t1= new Text(data[0]);
            Text t2 = new Text(data[1]);
            context.write(t1,t2);
        }
    } 
    /********** End **********/
    
    //在这重载reduce函数,直接将输入中的key复制到输出数据的key上  注意在reduce方法上要抛出异常:throws IOException,InterruptedException
    /********** Begin **********/
    public static class Reduce  extends Reducer<Text, Text, Text, Text>
    {
        protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            List<String> list = new ArrayList<>();
            for (Text text : values) {
                String str = text.toString();
                if(!list.contains(str)){
                    list.add(str);
                }
            }
            Collections.sort(list);
            for (String text : list) {
                context.write(key, new Text(text));
            }
        }
    /********** End **********/
    }
    
    public static void main(String[] args) throws Exception{
        Configuration conf = new Configuration();
         Job job = new Job(conf, "word count");
        job.setJarByClass(Merge.class);
        job.setMapperClass(Map.class);
        job.setCombinerClass(Reduce.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        String inputPath = "/user/tmp/input/";  //在这里设置输入路径
        String outputPath = "/user/tmp/output/";  //在这里设置输出路径
        FileInputFormat.addInputPath(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

在命令行输入:

start-all.sh

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/258052.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

去掉乘法运算的加法移位神经网络架构

[CVPR 2020] AdderNet: Do We Really Need Multiplications in Deep Learning? 代码&#xff1a;https://github.com/huawei-noah/AdderNet/tree/master 核心贡献 用filter与input feature之间的L1-范数距离作为“卷积层”的输出为了提升模型性能&#xff0c;提出全精度梯度…

Python之math模块常用方法汇总

python中math模块常用的方法整理 ceil:取大于等于x的最小的整数值&#xff0c;如果x是一个整数&#xff0c;则返回x copysign:把y的正负号加到x前面&#xff0c;可以使用0 cos:求x的余弦&#xff0c;x必须是弧度 degrees:把x从弧度转换成角度 e:表示一个常量 exp:返回mat…

docker制作php5.4运行环境镜像

1.下载镜像 docker pull centos:7或者在控制面板下 2.运行centos7镜像的容器&#xff0c;edncenos7 是新生成的容器名称 ## --name 新名字 docker run -it --name edncenos7 c9a1fdca3387 /bin/bash3.在容器内下载php5.4等插件&#xff0c;以便提交成为新镜像 wget --no-ch…

亚信安慧AntDB数据库——助力5G计费核心替换,全面自主可控

数字经济时代&#xff0c;5G以更快、更丰富、更智能的连接方式服务于各行各业。AntDB数据库&#xff0c;源于亚信科技&#xff0c;自2008年起成功落地全国24个省份的中国移动、中国电信、中国联通和中国广电等运营商项目&#xff0c;为数字化服务和信息化基础建设提供支持。 在…

精选猫咪最爱:五款性价比超高的猫罐头品牌大PK!

新手养猫很容易陷入疯狂购买的模式&#xff0c;但有些品牌真的不能乱买&#xff01;现在的大环境不太好&#xff0c;我们需要学会控制自己的消费欲望&#xff0c;把钱花在刀刃上&#xff01;现在宠物市场真的很内卷&#xff0c;很多品牌都在比拼产品的数据和营养成分。很多铲屎…

大数据讲课笔记5.1 初探MapReduce

文章目录 零、学习目标一、导入新课二、新课讲解&#xff08;一&#xff09;MapReduce核心思想&#xff08;二&#xff09;MapReduce编程模型&#xff08;三&#xff09;MapReduce编程实例——词频统计思路1、Map阶段&#xff08;映射阶段&#xff09;2、Reduce阶段&#xff08…

STM32启动流程详解(超全,startup_stm32xx.s分析)

单片机上电后执行的第一段代码 1.初始化堆栈指针 SP_initial_sp 2.初始化 PC 指针Reset_Handler 3.初始化中断向量表 4.配置系统时钟 5.调用 C 库函数_main 初始化用户堆栈&#xff0c;然后进入 main 函数。 在正式讲解之前&#xff0c;我们需要了解STM32的启动模式。 STM32的…

透视数据:数据可视化工具的多重场景应用

数据可视化工具已经成为了许多领域中的重要利器&#xff0c;它们在各种场景下发挥着重要作用。下面我就以可视化从业者的角度简单谈谈数据可视化工具在不同场景下的应用&#xff1a; 企业数据分析与决策支持 在企业层面&#xff0c;数据可视化工具被广泛应用于数据分析和决策…

27jd网卡丢失IP地址问题追踪

一、问题描述及复现步骤 问题描述 启用network服务&#xff0c;关闭NetworkManager服务后&#xff0c;&#xff08;通过 ip a 查看&#xff09; em1网卡丢失IP地址 网络相关组件信息 glib-networking-2.58.0-7.ky10.x86_64 network-scripts-10.01-6.ky10.x86_64 dracut-…

MapReduce综合应用案例 — 电信数据清洗

文章目录 第1关&#xff1a;数据清洗 第1关&#xff1a;数据清洗 测试说明 平台会对你编写的代码进行测试&#xff1a; 评测之前先在命令行启动hadoop&#xff1a;start-all.sh&#xff1b; 点击测评后MySQL所需的数据库和表会自动创建好。 PhoneLog&#xff1a;封装对象 L…

Android定制ROM简介

Android定制ROM简介 这篇文章是为对自定义ROM、AOSP等词汇不太熟悉的技术爱好者和好奇的人写的。我希望通过向您介绍这个世界来开始博客写作。 在我们将注意力转向定制ROM之前&#xff0c;让我们先了解一些基础知识。 什么是操作系统&#xff1f; 维基百科对此的定义简洁而…

探讨二维半导体的概念、应用前景及其与传统半导体的差异

当探讨二维半导体时&#xff0c;我们置身于科技革新的前沿。这种材料以其纳米级薄度和独特电学性质区别于传统半导体&#xff0c;引发了科学界的广泛兴趣。本文将深入探讨二维半导体的概念、应用前景及其与传统半导体的差异。 什么是二维半导体&#xff1f; 二维半导体是由单…

计算机网络 网络层下 | IPv6 路由选择协议,P多播,虚拟专用网络VPN,MPLS多协议标签

文章目录 5 IPv65.1 组成5.2 IPv6地址5.3 从IPv4向IPv6过渡5.3.1 双协议栈5.3.2 隧道技术 6 因特网的路由选择协议6.1 内部网关协议RIP6.2 内部网关协议 OSPF基本特点 6.3 外部网关协议 BGP6.3.1 路由选择 6.4 路由器组成6.4.1 基本了解6.4.2 结构 7 IP多播7.1 硬件多播7.2 IP多…

0062-Java运算符

文章目录 1.运算符介绍2.算术运算符2.1 介绍2.2 细节说明 3.关系运算符(比较运算符)3.1 介绍3.2 细节说明 4.逻辑运算符4.1 介绍4.2 逻辑运算规则4.3 && 和 & 基本规则4.4 && 和 & 使用区别4.5 || 和 | 基本规则4.6 || 和 | 使用区别 5. ! 取反 基本规…

Logback简介与配置详解

在开发和维护Spring Boot应用程序时&#xff0c;一个强大而灵活的日志框架是至关重要的。Spring Boot默认集成了Logback&#xff0c;一个高性能的Java日志框架。本文将介绍如何配置Logback以满足你的日志记录需求。 Logback简介 官方网址&#xff1a;https://logback.qos.ch/ …

Kafka核心参数(带完善)

客户端 api Kafka提供了以下两套客户端API HighLevel(重点)LowLevel HighLevel API封装了kafka的运行细节&#xff0c;使用起来比较简单&#xff0c;是企业开发过程中最常用的客户端API。 而LowLevel API则需要客户端自己管理Kafka的运行细节&#xff0c;Partition&#x…

RocketMQ系统性学习-SpringCloud Alibaba集成RocketMQ以及消费收发实战

文章目录 Spring Cloud Alibaba 集成 RocketMQ 最佳实践集成依赖DashBoard消息收发实战 Spring Cloud Alibaba 集成 RocketMQ 最佳实践 SpringBoot 相对于 SSM 来说已经很大程度上简化了开发&#xff0c;但是使用 SpringBoot 集成一些第三方的框架&#xff0c;还是需要花费一些…

Node.js 工作线程与子进程:应该使用哪一个

Node.js 工作线程与子进程&#xff1a;应该使用哪一个 并行处理在计算密集型应用程序中起着至关重要的作用。例如&#xff0c;考虑一个确定给定数字是否为素数的应用程序。如果我们熟悉素数&#xff0c;我们就会知道必须从 1 遍历到该数的平方根才能确定它是否是素数&#xff…

搭建知识付费平台?明理信息科技为你提供全程解决方案

明理信息科技saas知识付费平台 在当今数字化时代&#xff0c;知识付费已经成为一种趋势&#xff0c;越来越多的人愿意为有价值的知识付费。然而&#xff0c;公共知识付费平台虽然内容丰富&#xff0c;但难以满足个人或企业个性化的需求和品牌打造。同时&#xff0c;开发和维护…