Kubernetes 的用法和解析 -- 5

一.企业级镜像仓库Harbo

准备:另起一台新服务器,并配置docker yum源,安装docker 和 docker-compose

1.1 上传harbor安装包并安装
[root@harbor ~]# tar xf harbor-offline-installer-v2.5.3.tgz
[root@harbor ~]# cp harbor.yml.tmpl harbor.yml
[root@harbor ~]# vim harbor.yml
hostname: 192.168.58.146    

# http related config
http:
  # port for http, default is 80. If https enabled, this port will redirect to https port
  port: 80
# 注释所有https的内容

[root@harbor ~]# sh install.sh
1.2 浏览器访问

默认账号:admin     默认密码:Harbor12345

1.3 k8s使用harbor仓库
# 两台node节点执行
[root@kube-node1 ~]# vim /etc/docker/daemon.json    #不存在则创建
{ "insecure-registries": ["192.168.58.146"] }

# 重启docker:
[root@kube-node1 ~]# systemctl restart docker
1.4 上传镜像到仓库
[root@kube-node1 ~]# docker login http://192.168.246.168
username:admin
password:
[root@kube-node1 ~]# docker pull daocloud.io/library/nginx
[root@kube-node1 ~]# docker tag daocloud.io/library/nginx 192.168.58.146/library/nginx:v1.0
1.5 创建secret.yaml文件
[root@kube-node1 ~]# cat ~/.docker/config.json |base64 -w 0
ewoJImF1dGhzIjogewoJCSIxOTIuMTY4LjU4LjE0NiI6IHsKCQkJImF1dGgiOiAiWVdSdGFXNDZTR0Z5WW05eU1USXoiCgkJfQoJfQp9

#创建 secret.yaml 文件
[root@kube-master ~]# vim secret.yaml
apiVersion: v1
kind: Secret
metadata:
  name: login
type: kubernetes.io/dockerconfigjson
data:
  .dockerconfigjson: ewoJImF1dGhzIjogewoJCSIxOTIuMTY4LjU4LjE0NiI6IHsKCQkJImF1dGgiOiAiWVdSdGFXNDZTR0Z5WW05eU1USXo
  
[root@kube-master ~]# kubectl apply -f secret.yaml
1.6 k8s-pod 使用镜像
[root@kube-master ~]# vim harbor-pod.yml
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: show
spec:
  replicas: 2
  selector:
    matchLabels:
      app: show
  template:
    metadata:
      labels:
        app: show
    spec:
      containers:
      - name: show
        image: 192.168.58.146/library/nginx:v1.0
        ports:
        - containerPort: 80
      imagePullSecrets:
        - name: login

---
apiVersion: v1
kind: Service
metadata:
  name: show-service
spec:
  type: NodePort
  selector:
    app: show
  ports:
  - port: 80
    targetPort: 80
    nodePort: 32000    #范围:30000 - 32765

浏览器访问:192.168.58.146:32000

二.水平扩展/收缩与滚动更新

2.1 水平扩展/收缩
2.1.1 创建一个deployment
[root@kube-master ~]# vim deployment.yaml
---
apiVersion: v1
kind: Namespace
metadata:
  name: dep01
  labels:
    name: dep01
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.16.1
        ports:
        - containerPort: 80

[root@kube-master ~]# kubectl apply -f deployment.yaml
2.1.2 通过声明方式扩展
[root@kub-k8s-master prome]# kubectl get deploy
NAME               READY   UP-TO-DATE   AVAILABLE   AGE
dep01              2/2     2            2           4h41m

我们将dep01的副本数量变成4个,现在2个
[root@kub-k8s-master prome]# vim deployment.yaml  #修改如下内容
将replicas: 2
修改为:
replicas: 4
[root@kub-k8s-master prome]# kubectl apply -f deployment.yaml --record
deployment.apps/dep01 configured

--record  kubectl apply 每次更新应用时 Kubernetes 都会记录下当前的配置,保存为一个 revision(版次),这样就可以回滚到某个特定 revision。

检查nginx-deployment 创建后的状态信息:

[root@kub-k8s-master prome]# kubectl get deploy
NAME               READY   UP-TO-DATE   AVAILABLE   AGE
dep01              4/4     4            4           4h53m

返回结果中四个状态字段含义:

DESIRED: 
如果有就表示用户期望的 Pod 副本个数(spec.replicas 的值);

CURRENT:
当前处于 Running 状态的 Pod 的个数;

UP-TO-DATE:
当前处于最新版本的 Pod 的个数,所谓最新版本指的是 Pod 的 Spec 部分与 Deployment 里 Pod 模板里定义的完全一致;

AVAILABLE:
当前已经可用的 Pod 的个数,即:既是 Running 状态,又是最新版本,并且已经处于 Ready(健康检查正确)状态的 Pod 的个数。只有这个字段,描述的才是用户所期望的最终状态。

2.1.3 通过edit方式收缩
[root@kub-k8s-master prome]# kubectl get deploy
NAME               READY   UP-TO-DATE   AVAILABLE   AGE
dep01              4/4     4            4           4h59m

将dep01的副本将4变为3个
[root@kub-k8s-master prome]# kubectl edit deployment/dep01

# reopened with the relevant failures.
#
apiVersion: apps/v1
...
spec:
  progressDeadlineSeconds: 600
  replicas: 3   #将这里原来的4改为3
  revisionHistoryLimit: 10
  selector:
    matchLabels:
...
保存退出,vim的方式
[root@kub-k8s-master prome]# kubectl edit deployment/dep01
deployment.apps/dep01 edited
2.2 滚动更新

概念:

将一个集群中正在运行的多个 Pod 版本,交替地逐一升级的过程,就是"滚动更新"。

2.2.1 进行版本的升级
创建一个新的deploy
[root@kub-k8s-master prome]# cp nginx-depl.yml nginx-depl02.yml
[root@kub-k8s-master prome]# vim nginx-depl02.yml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: dep02 #注意修改
spec:
  selector:
    matchLabels:
      app: web1
  replicas: 2
  template:
      metadata:
        name: testnginx9
        labels:
          app: web1
      spec:
        containers:
          - name: testnginx9
            image: daocloud.io/library/nginx:1.14 #注意修改
            ports:
              - containerPort: 80
[root@kub-k8s-master prome]# kubectl apply -f nginx-depl02.yml 
deployment.apps/dep02 created
[root@kub-k8s-master prome]# kubectl get pods
NAME                                READY   STATUS    RESTARTS   AGE
dep01-58f6d4d4cb-997jw              1/1     Running   0          16m
dep01-58f6d4d4cb-g6vtg              1/1     Running   0          5h32m
dep01-58f6d4d4cb-k6z47              1/1     Running   0          5h32m
dep02-78dbd944fc-47czr              1/1     Running   0          44s
dep02-78dbd944fc-4snsj              1/1     Running   0          25s

将nginx的版本从1.14升级到1.16
[root@kub-k8s-master prome]# kubectl edit deployment/dep02
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this file will be
...
spec:
      containers:
      - image: daocloud.io/library/nginx:1.16  #将这里原来的nginx:1.14修改为nginx:1.16
        imagePullPolicy: Always
        name: testnginx9
        ports:
        - containerPort: 80
...
保存退出,vim的方式
[root@kub-k8s-master prome]# kubectl edit deployment/dep02
deployment.apps/dep01 edited

这时可以通过查看 Deployment 的 Events,看到这个"滚动更新"的流程

[root@kub-k8s-master prome]# kubectl describe deployment dep02
...
Events:
  Type    Reason             Age   From                   Message
  ----    ------             ----  ----                   -------
  Normal  ScalingReplicaSet  50s   deployment-controller  Scaled up replica set dep02-846bf8775b to 2
  Normal  ScalingReplicaSet  9s    deployment-controller  Scaled up replica set dep02-58f8d5678 to 1
  Normal  ScalingReplicaSet  8s    deployment-controller  Scaled down replica set dep02-846bf8775b to 1
  Normal  ScalingReplicaSet  8s    deployment-controller  Scaled up replica set dep02-58f8d5678 to 2
  Normal  ScalingReplicaSet  5s    deployment-controller  Scaled down replica set dep02-846bf8775b to 0

如此交替进行,新 ReplicaSet 管理的 Pod 副本数,从 0 个变成 1 个,再变成 2 个,最后变成 3 个。而旧的 ReplicaSet 管理的 Pod 副本数则从 3 个变成 2 个,再变成 1 个,最后变成 0 个。这样,就完成了这一组 Pod 的版本升级过程。

2.2.2 验证
[root@kub-k8s-master prome]# kubectl get pods
NAME                                READY   STATUS    RESTARTS   AGE
dep02-78dbd944fc-69t8x              1/1     Running   0          11h
dep02-78dbd944fc-7cn86              1/1     Running   0          11h
[root@kub-k8s-master prome]# kubectl exec -it dep02-78dbd944fc-69t8x /bin/bash 
root@dep02-78dbd944fc-69t8x:/# nginx -v 
nginx version: nginx/1.16.1
root@dep02-78dbd944fc-69t8x:/# exit
2.2.3 滚动更新的好处

在升级刚开始的时候,集群里只有 1 个新版本的 Pod。如果这时,新版本 Pod 有问题启动不起来,那么"滚动更新"就会停止,从而允许开发和运维人员介入。而在这个过程中,由于应用本身还有两个旧版本的 Pod 在线,所以服务并不会受到太大的影响。

2.3 版本回滚
2.3.1 查看版本历史
[root@kub-k8s-master prome]# kubectl rollout history deployment/dep02
deployment.apps/dep02 
REVISION  CHANGE-CAUSE
1         <none>
2         <none>
2.3.2 回滚到以前的旧版本:

   把整个 Deployment 回滚到上一个版本:

[root@kub-k8s-master prome]# kubectl rollout undo deployment/dep02
deployment.apps/dep02 rolled back

查看回滚状态

[root@kub-k8s-master prome]# kubectl rollout status deployment/dep02
deployment "dep02" successfully rolled out

验证:

[root@kub-k8s-master prome]# kubectl get pods
NAME                                READY   STATUS             RESTARTS   AGE
dep02-8594cd6447-pqtxk              1/1     Running            0          55s
dep02-8594cd6447-tt4h4              1/1     Running            0          51s
[root@kub-k8s-master prome]# kubectl exec -it dep02-8594cd6447-tt4h4 /bin/bash 
root@dep02-8594cd6447-tt4h4:/# nginx -v 
nginx version: nginx/1.14.2
2.3.3 回滚到更早之前的版本
  1. 使用 kubectl rollout history 命令查看每次 Deployment 变更对应的版本。

[root@kub-k8s-master prome]# kubectl rollout history deployment/dep02
deployment.apps/dep02 
REVISION  CHANGE-CAUSE
2         <none>
3         <none>

#默认配置下,Kubernetes 只会保留最近的几个 revision,可以在 Deployment 配置文件中通过 revisionHistoryLimit: 属性增加 revision 数量。

由于在创建这个 Deployment 的时候,指定了--record 参数,会将创建这些版本时执行的 kubectl 时文件中的配置,都会记录下来。

   查看每个版本对应的 Deployment 的 API 对象的细节:

[root@kub-k8s-master prome]# kubectl rollout history deployment/dep02 --revision=3
deployment.apps/dep02 with revision #3
Pod Template:
  Labels:	app=web1
	pod-template-hash=8594cd6447
  Containers:
   testnginx9:
    Image:	daocloud.io/library/nginx:1.14
    Port:	80/TCP
    Host Port:	0/TCP
    Environment:	<none>
    Mounts:	<none>
  Volumes:	<none>

2.在 kubectl rollout undo 命令行最后,加上要回滚到的指定版本的版本号,就可以回滚到指定版本了。

[root@kub-k8s-master prome]# kubectl rollout undo deployment/dep02 --to-revision=2
deployment.apps/dep02 rolled back

#验证:
[root@kub-k8s-master prome]# kubectl get pods
NAME                                READY   STATUS             RESTARTS   AGE
dep02-78dbd944fc-8nvxl              1/1     Running            0          86s
dep02-78dbd944fc-sb9sj              1/1     Running            0          88s
[root@kub-k8s-master prome]# kubectl exec -it dep02-78dbd944fc-8nvxl /bin/bash 
root@dep02-78dbd944fc-8nvxl:/# nginx -v
nginx version: nginx/1.16.1

三.DeamonSet详解

3.1 何为DaemonSet

介绍DaemonSet我们先来思考一个问题:相信大家都接触过监控系统比如zabbix,监控系统需要在被监控机安装一个agent,安装agent通常会涉及到以下几个场景:

- 所有节点都必须安装agent以便采集监控数据
- 新加入的节点需要配置agent,手动或者运行脚本

k8s中经常涉及到在node上安装部署应用,它是如何解决上述的问题的呢?答案是DaemonSet。DaemonSet守护进程简称DS,适用于在所有节点或部分节点运行一个daemon守护进程。

DaemonSet 的主要作用,是让你在 k8s 集群里,运行一个 Daemon Pod。

这个 Pod 有如下三个特征:

  1. 这个 Pod 运行在 k8s 集群里的每一个节点(Node)上;

  2. 每个节点上只有一个这样的 Pod 实例;

  3. 当有新的节点加入 Kubernetes 集群后,该 Pod 会自动地在新节点上被创建出来;而当旧节点被删除后,它上面的 Pod 也相应地会被回收掉。

举例:

        各种网络插件的 Agent 组件,都必须运行在每一个节点上,用来处理这个节点上的容器网络;

        各种存储插件的 Agent 组件,也必须运行在每一个节点上,用来在这个节点上挂载远程存储目录,操作容器的 Volume 目录;

        各种监控组件和日志组件,也必须运行在每一个节点上,负责这个节点上的监控信息和日志搜集。

3.2 DaemonSet 的 API 对象的定义

所有node节点分别下载镜像

# docker pull daocloud.io/daocloud/fluentd-elasticsearch:1.20
# docker pull daocloud.io/daocloud/fluentd-elasticsearch:v2.2.0

fluentd-elasticsearch 镜像功能:

通过 fluentd 将每个node节点上面的Docker 容器里的日志转发到 ElasticSearch 中。

编写daemonset配置文件

Yaml文件内容如下

[root@k8s-master ~]# mkdir set
[root@k8s-master ~]# cd set/
[root@k8s-master set]# vim fluentd-elasticsearch.yaml # DaemonSet 没有 replicas 字段
apiVersion: apps/v1
kind: DaemonSet  #创建资源的类型
metadata:
 name: fluentd-elasticsearch
 namespace: kube-system
 labels:
  k8s-app: fluentd-logging
spec:
 selector:
  matchLabels:
   name: fluentd-elasticsearch
 template:
  metadata:
   labels:
    name: fluentd-elasticsearch
  spec:
   tolerations:  #容忍污点
   - key: node-role.kubernetes.io/master #污点
     effect: NoSchedule  #描述污点的效应
   containers:
   - name: fluentd-elasticsearch
     image: daocloud.io/daocloud/fluentd-elasticsearch:1.20
     resources:  #限制使用资源
      limits:  #定义使用内存的资源上限
       memory: 200Mi
      requests: #实际使用
       cpu: 100m
       memory: 200Mi
     volumeMounts:
     - name: varlog
       mountPath: /var/log
     - name: varlibdockercontainers
       mountPath: /var/lib/docker/containers
       readOnly: true
   volumes:
   - name: varlog
     hostPath:  #定义卷使用宿主机目录
      path: /var/log
   - name: varlibdockercontainers
     hostPath:
      path: /var/lib/docker/containers

DaemonSet 没有 replicas 字段

selector :

选择管理所有携带了 name=fluentd-elasticsearch 标签的 Pod。

Pod 的模板用 template 字段定义:

定义了一个使用 fluentd-elasticsearch:1.20 镜像的容器,而且这个容器挂载了两个 hostPath 类型的 Volume,分别对应宿主机的 /var/log 目录和 /var/lib/docker/containers 目录。

fluentd 启动之后,它会从这两个目录里搜集日志信息,并转发给 ElasticSearch 保存。这样,通过 ElasticSearch 就可以很方便地检索这些日志了。Docker 容器里应用的日志,默认会保存在宿主机的 /var/lib/docker/containers/{{. 容器 ID}}/{{. 容器 ID}}-json.log 文件里,这个目录正是 fluentd 的搜集目标。

DaemonSet 如何保证每个 Node 上有且只有一个被管理的 Pod ?

DaemonSet Controller,首先从 Etcd 里获取所有的 Node 列表,然后遍历所有的 Node。这时,它就可以很容易地去检查,当前这个 Node 上是不是有一个携带了 name=fluentd-elasticsearch 标签的 Pod 在运行。

检查结果有三种情况:

1. 没有这种 Pod,那么就意味着要在这个 Node 上创建这样一个 Pod;指定的 Node 上创建新 Pod 用 nodeSelector,选择 Node 的名字即可。
2. 有这种 Pod,但是数量大于 1,那就说明要把多余的 Pod 从这个 Node 上删除掉;删除节点(Node)上多余的 Pod 非常简单,直接调用 Kubernetes API 就可以了。
3. 正好只有一个这种 Pod,那说明这个节点是正常的。

tolerations:

DaemonSet 还会给这个 Pod 自动加上另外一个与调度相关的字段,叫作 tolerations。这个字段意思是这个 Pod,会"容忍"(Toleration)某些 Node 的"污点"(Taint)。

tolerations 字段,格式如下:

apiVersion: v1
kind: Pod
metadata:
 name: with-toleration
spec:
 tolerations:
 - key: node.kubernetes.io/unschedulable  #污点的key
   operator: Exists #将会忽略value;只要有key和effect就行
   effect: NoSchedule  #污点的作用

含义是:"容忍"所有被标记为 unschedulable"污点"的 Node;"容忍"的效果是允许调度。可以简单地把"污点"理解为一种特殊的 Label。

正常情况下,被标记了 unschedulable"污点"的 Node,是不会有任何 Pod 被调度上去的(effect: NoSchedule)。可是,DaemonSet 自动地给被管理的 Pod 加上了这个特殊的 Toleration,就使得这些 Pod 可以忽略这个限制,保证每个节点上都会被调度一个 Pod。如果这个节点有故障的话,这个 Pod 可能会启动失败,DaemonSet 会始终尝试下去,直到 Pod 启动成功。

DaemonSet 的"过人之处",其实就是依靠 Toleration 实现的

DaemonSet 是一个控制器。在它的控制循环中,只需要遍历所有节点,然后根据节点上是否有被管理 Pod 的情况,来决定是否要创建或者删除一个 Pod。

更多种类的Toleration

可以在 Pod 模板里加上更多种类的 Toleration,从而利用 DaemonSet 实现自己的目的。

比如,在这个 fluentd-elasticsearch DaemonSet 里,给它加上了这样的 Toleration:

tolerations:
- key: node-role.kubernetes.io/master
  effect: NoSchedule

这是因为在默认情况下,Kubernetes 集群不允许用户在 Master 节点部署 Pod。因为,Master 节点默认携带了一个叫作node-role.kubernetes.io/master的"污点"。所以,为了能在 Master 节点上部署 DaemonSet 的 Pod,就必须让这个 Pod"容忍"这个"污点"。

3.3 DaemonSet实践
3.3.1 创建 DaemonSet 对象
[root@k8s-master set] # kubectl create -f fluentd-elasticsearch.yaml

DaemonSet 上一般都加上 resources 字段,来限制它的 CPU 和内存使用,防止它占用过多的宿主机资源。

创建成功后,如果有 3 个节点,就会有 3 个 fluentd-elasticsearch Pod 在运行

[root@k8s-master set]# kubectl get pod -n kube-system -l name=fluentd-elasticsearch
NAME                          READY   STATUS    RESTARTS   AGE
fluentd-elasticsearch-6lmnb   1/1     Running   0          21m
fluentd-elasticsearch-9fd7k   1/1     Running   0          21m
fluentd-elasticsearch-vz4n4   1/1     Running   0          21m
3.3.2 查看 DaemonSet 对象
[root@k8s-master set]# kubectl get ds -n kube-system fluentd-elasticsearch
NAME                    DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
fluentd-elasticsearch   3         3         3       3            3           <none>          22m

注:k8s 里比较长的 API 对象都有短名字,比如 DaemonSet 对应的是 ds,Deployment 对应的是 deploy。

3.3.3 DaemonSet 版本管理
[root@k8s-master set]# kubectl rollout history daemonset fluentd-elasticsearch -n kube-system
daemonset.apps/fluentd-elasticsearch 
REVISION  CHANGE-CAUSE
1         <none>
3.3.4 DaemonSet 的容器镜像版本到 v2.2.0
[root@k8s-master set]# kubectl set image ds/fluentd-elasticsearch fluentd-elasticsearch=daocloud.io/daocloud/fluentd-elasticsearch:v2.2.0 --record -n=kube-system
daemonset.apps/fluentd-elasticsearch image updated

这个 kubectl set image 命令里,第一个 fluentd-elasticsearch 是 DaemonSet 的名字,第二个 fluentd-elasticsearch 是容器的名字。

--record 参数:

升级使用到的指令会自动出现在 DaemonSet 的 rollout history 里面,如下所示:

[root@k8s-master set]# kubectl rollout history daemonset fluentd-elasticsearch -n kube-system
daemonset.apps/fluentd-elasticsearch 
REVISION  CHANGE-CAUSE
1         <none>
2         kubectl set image ds/fluentd-elasticsearch fluentd-elasticsearch=daocloud.io/daocloud/fluentd-elasticsearch:v2.2.0 --record=true --namespace=kube-system

有了版本号,也就可以像 Deployment 一样,将 DaemonSet 回滚到某个指定的历史版本了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/257097.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

新媒体宣传与广州迅腾文化传播有限公司:品牌知名度提升的新动力

新媒体宣传与广州迅腾文化传播有限公司&#xff1a;品牌知名度提升的新动力 随着科技的飞速发展和互联网的普及&#xff0c;新媒体已经成为现代社会不可或缺的一部分。新媒体平台具有传播速度快、覆盖面广的特点&#xff0c;为企业品牌宣传提供了前所未有的机会。广州迅腾文化…

零基础也能制作家装预约咨询小程序

近年来&#xff0c;随着互联网的快速发展&#xff0c;越来越多的消费者倾向于使用手机进行购物和咨询。然而&#xff0c;许多家装实体店却发现自己的客流量越来越少&#xff0c;急需一种新的方式来吸引顾客。而开发家装预约咨询小程序则成为了一种利用互联网技术来解决这一问题…

linux xxd命令(将文件或标准输入转换为hex(十六进制)和ASCII(美国信息交换标准代码)表示,或者从hex dump(十六进制转储)反向到二进制)

文章目录 Linux xxd命令安装xxd基本使用方法创建hex dump从hex dump恢复到二进制 命令选项疑难技术点解析在脚本中使用xxd从hex dump恢复数据 总结 Linux xxd命令 xxd是一个在Linux和UNIX系统中常用的工具&#xff0c;主要用于将文件或标准输入转换为hex&#xff08;十六进制&…

TCP/IP 传输层协议

传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP&#xff08;Transmission Control Protocol&#xff09;和用户数据包协议UDP&#xff08;User Datagram Protocol&#xff09;。 TCP协议 TCP是一种面向连接的传输层协议&#…

仿猪八戒威客网整站PHP源码

源码介绍 phpmysql环境。威客开源建站系统&#xff0c;其主要交易对象是以用户为主的技能、经验、时间和智慧型商品。经过多年发展&#xff0c;解决方案成熟&#xff0c;站长用户群稳步增长。产品成为同类开源建站产品的领导者&#xff0c;是搭建在线服务交易平台的首选产品。…

【P2PTransportChannel 】2: 创建Connetion、 BasicPortAllocatorSession

基于m98P2PTransportChannel::MaybeStartGathering() 触发PortAllocator 对 session的管理(创建等) P2PTransportChannel::MaybeStartGathering() session都放在PortAllocator的 一个vector 中:std::vector<std::unique_ptr<PortAllocatorSession>> pooled_sess…

DC-6靶场

DC-6靶场下载&#xff1a; https://www.five86.com/downloads/DC-6.zip 下载后解压会有一个DC-3.ova文件&#xff0c;直接在vm虚拟机点击左上角打开-->文件-->选中这个.ova文件就能创建靶场&#xff0c;kali和靶机都调整至NAT模式&#xff0c;即可开始渗透 首先进行主…

2023年第四届 “赣网杯” 网络安全大赛 gwb-web3 Write UP【PHP 临时函数名特性 + 绕过trim函数】

一、题目如下&#xff1a; 二、代码解读&#xff1a; 这段代码是一个简单的PHP脚本&#xff0c;它接受通过GET请求传递的两个参数&#xff1a;‘pass’和’func’&#xff1a; ① $password trim($_GET[pass] ?? );&#xff1a;从GET请求中获取名为’pass’的参数&#xff0…

解决你的 Nginx 代理跨域问题详细完整版

当你遇到跨域问题&#xff0c;不要立刻就选择复制去尝试。请详细看完这篇文章再处理 。我相信它能帮到你。 分析前准备&#xff1a; 前端网站地址&#xff1a;http://localhost:8080 服务端网址&#xff1a;http://localhost:59200 首先保证服务端是没有处理跨域的&#x…

22.JSP技术

JSP起源 在很多动态网页中&#xff0c;绝大部分内容都是固定不变的&#xff0c;只有局部内容需要动态产生和改变。如果使用Servlet程序来输出只有局部内容需要动态改变的网页&#xff0c;其中所有的静态内容也需要程序员用Java程序代码产生&#xff0c;整个Servlet程序的代码将…

OpenShift 4 - 管理和使用 OpenShift AI 运行环境

《OpenShift / RHEL / DevSecOps 汇总目录》 说明&#xff1a;本文已经在 OpenShift 4.14 RHODS 2.50 的环境中验证 文章目录 启停 Notebook Server启动停止 Notebook 镜像Notebook Image 和 ImageStream使用定制的 Notebook Image 定制服务器的运行配置应用和项目用户和访问权…

一篇文章带你了解各个程序员接单平台,让你选择不再迷茫!!!

相信现在很多程序员都已经走上了或者准备走上网上接单这条路&#xff0c;但是目前市面上的接单平台可谓五花八门&#xff0c;对于各个平台的优缺点&#xff0c;不同的程序员该如何选择适合自己的接单平台&#xff0c;你又是否了解呢&#xff1f; 接下来就让小编用一篇文章来为…

C++数据结构——二叉搜索树详解

目录 一&#xff0c;关于二叉搜索树 1.1 概念 1.2 基本结构 二&#xff0c;二叉搜索树接口实现 2.1 插入 2.2 查找 2.3 打印 2.4* 删除 三&#xff0c;二叉搜索树接口递归实现 3.1 查找 3.2 插入 3.3 删除 四&#xff0c;二叉搜索树的默认成员函数 五&#xff0c;…

国产划片机品牌众多,如何选择优质的供应商?

在半导体行业的发展浪潮中&#xff0c;划片机作为关键设备之一&#xff0c;其性能和质量对于生产过程的高效性和产品的质量具有至关重要的影响。近年来&#xff0c;国产划片机的品牌数量不断增多&#xff0c;为半导体行业提供了更多的选择。然而&#xff0c;如何从众多的品牌中…

2023 英特尔On技术创新大会直播 | AI 融合发展之旅

前言 2023 年的英特尔 On 技术创新大会中国站&#xff0c;主要聚焦最新一代增强 AI 能力的计算平台&#xff0c;深度讲解如何支持开放、多架构的软件方案&#xff0c;以赋能人工智能并推动其持续发展。 大会的目标之一是优化系统并赋能开发者&#xff0c;特别注重芯片增强技术…

个人用户的数据之美:数据可视化助力解读

数据可视化是一种强大的工具&#xff0c;不仅可以为企业和专业人士提供见解&#xff0c;也对个人用户带来了许多实际的帮助。下面我就以一个数据可视化从业者的视角&#xff0c;来谈谈数据可视化对个人用户的益处&#xff1a; 首先对于个人用户来说&#xff0c;数据可视化可以让…

金蝶报表二开

本案例描述&#xff1a; 折旧明细报表中加入字段&#xff1a;存放地点、成本中心部门、使用人组织三个字段。 参考社区案例&#xff1a;报表二次开发添加自定义字段的指导方案 步骤&#xff1a; 1、加入报表插件 继承原报表的类。重写BuilderReportSqlAndTempTable、GetRe…

【Python秘技】用Python实现千图成像,千字成像,编程炫技必备!

一个千图成像&#xff0c;千字成像的程序&#xff0c;开源给大家玩玩。 用她的名字组成她的照片会不会很酷呢&#xff1f; 后续会完善更多功能&#xff0c;打包为程序。 源代码在这里&#xff1a;https://github.com/w-x-x-w/Thousand-Image-Generator 讲解在这里&#xff…

armday1

1到一百的累加

Saliency Prediction in the Deep LearningEra: Successes and Limitations

摘要&#xff1a; 近年来&#xff0c;由于深度学习和大规模注释数据的进步&#xff0c;视觉显著性模型在性能上有了很大的飞跃。然而&#xff0c;尽管付出了巨大的努力并取得了巨大的突破&#xff0c;但模型在达到人类水平的准确性方面仍然存在差距。在这项工作中&#xff0c;…