【设计模式--行为型--访问者模式】

设计模式--行为型--访问者模式

    • 访问者模式
      • 定义
      • 结构
      • 案例
      • 优缺点
      • 使用场景
      • 扩展
        • 分派
        • 动态分派
        • 静态分派
        • 双分派

访问者模式

定义

封装一些作用于某种数据结构中的各元素的操作,它可以在不改变这个数据结构的前提下定义作用于这些元素的新操作。

结构

  • 抽象访问者角色(Visitor):定义了对每一个元素访问的行为,它的参数就是可以访问的元素,它的方法个数理论上来说于元素类个数是一样的,从这点上来看,访问者模式要求元素类的个数不能改变。
  • 具体访问者角色(Concrete Visitor):给出对每一个元素类访问时所产生的具体行为。
  • 抽象元素角色(Element):定义了一个接受访问者的方法,其意义是指,每一个元素都要可以被访问者访问。
  • 具体元素角色(Concrete Element):提供接受访问方法的具体实现,而这个具体的实现,通常情况下是使用访问者提供的访问该元素类的方法。
  • 对象结构角色(Object Structure):定义当中所提到的对象结构,对象机构是一个抽象表述,具体点可以理解为一个具有容器性质或者复合对象特性的类,它会含有一组元素,并且可以迭代这些元素,供访问者访问。

案例

给宠物喂食

  • 访问者角色:给宠物喂食的人
  • 具体访问者角色:主人,其他人
  • 抽象元素角色:动物抽象类
  • 具体元素角色:宠物狗,宠物猫
  • 结构对象角色:主人家
    类图:
    在这里插入图片描述
/**
 * 抽象元素角色类
 */
public interface Animal {

    // 接受访问者访问的功能
    void accept(Person person);
}
/**
 * 具体元素角色类  猫
 */
public class Cat implements Animal{
    @Override
    public void accept(Person person) {
        person.feed(this);
        System.out.println("喵喵喵~");
    }
}
/**
 * 具体元素角色类  狗
 */
public class Dog implements Animal{
    @Override
    public void accept(Person person) {
        person.feed(this);
        System.out.println("汪汪汪~");
    }
}
/**
 * 抽象访问者角色类
 */
public interface Person {
    void feed(Cat cat);
    void feed(Dog dog);
}
/**
 * 具体访问者角色类  自己
 */
public class Owner implements Person{
    @Override
    public void feed(Cat cat) {
        System.out.println("主人喂猫");
    }

    @Override
    public void feed(Dog dog) {
        System.out.println("主人喂狗");
    }
}
/**
 * 具体访问者角色类  别人
 */
public class Someone implements Person{
    @Override
    public void feed(Cat cat) {
        System.out.println("别人喂猫");
    }

    @Override
    public void feed(Dog dog) {
        System.out.println("别人喂狗");
    }
}
/**
 * 对象结构类
 */
public class Home {

    // 声明一个集合对象,用来存储元素对象
    private List<Animal> nodeList = new ArrayList<>();

    // 添加元素
    public void add(Animal animal){
        nodeList.add(animal);
    }
    public void action(Person person){
        // 遍历集合获取每一个元素,让访问者访问每一个元素
        for (Animal animal : nodeList) {
            animal.accept(person);
        }
    }
}
public class Test01 {
    public static void main(String[] args) {
        // 创建home对象
        Home home = new Home();
        // 添加元素
        home.add(new Cat());
        home.add(new Dog());
        // 创建主人对象
        Owner owner = new Owner();
        // 让主人喂所有的宠物
        home.action(owner);
    }
}

在这里插入图片描述

优缺点

  • 优点
    • 扩展性好,在不修改对象结构中元素的情况下,为对象结构中的元素添加新的功能。
    • 复用性好,通过访问者来定义整个对象结构通用的功能,从而提高复用程度。
    • 分离无关行为,通过访问者来分离无关的行为,把相关的行为封装在一起,构成一个访问者,这样每一个访问者的功能都比较单一。
  • 缺点
    • 对象结构变化困难,在访问者模式中,每增加一个新的元素类,都要在每一个具体访问者类中增加相应的具体操作,违背了开闭原则
    • 违反了依赖倒置原则,访问者模式依赖了具体类,而没有依赖抽象类。

使用场景

  • 对象结构相对稳定,但操作算法经常变化
  • 对象结构中的对象需要提供多种不同且不相关的操作,而且要避免让这些操作的变化影响对象的结构。

扩展

访问者用到了一种双分派技术。

分派

变量被声明时的类型叫做变量的静态类型,又称明显类型;而变量所引起的对象的真实类型又叫做变量的实际类型。比如Map map = new HashMap(),map变量的静态类型是Map,实际类型是HashMap。根据对象的类型而对方法进行的选择。就是分派(Dispatch),分派又分两种,静态分派和动态分派。

  • 静态分派,发生在编译时期,分派根据静态类型信息发生。方法重载就是静态分派。
  • 动态分派,发生在运行时期,动态分派动态的置换掉某个方法,Java就是通过方法的重写支持动态分派。
动态分派

通过方法的重写支持动态分派

public class Animal {
    public void execute(){
        System.out.println("animal");
    }
}

public class Dog extends Animal{
    @Override
    public void execute() {
        System.out.println("dog");
    }
}

public class Cat extends Animal{
    @Override
    public void execute() {
        System.out.println("cat");
    }
}

public class Test{
    public static void main(String[] args) {
        Animal animal = new Dog();
        animal.execute();

        Animal animal1 = new Cat();
        animal1.execute();
    }
}

上面是多态,运行执行的是子类中的方法。
Java编译器在编译时期并不总是知道哪些代码会被执行,因为编译器仅仅知道对象的静态类型,而不知道对象的真是类型;而方法的调用则是根据对象的真实类型,而不是静态类型。

静态分派

通过方法重载支持静态分派

public class Animal {
    public void execute(){
        System.out.println("animal");
    }
}

public class Dog extends Animal{
}

public class Cat extends Animal{
}

public class Execute{
    public void execute(Animal animal){
        System.out.println("animal");
    }
    public void execute(Cat cat){
        System.out.println("cat");
    }
    public void execute(Dog dog){
        System.out.println("dog");
    }
}

public class Test{
    public static void main(String[] args) {
        Animal animal = new Animal();
        Animal animal2 = new Cat();
        Animal animal3 = new Dog();
        
        Execute execute = new Execute();
        execute.execute(animal);   // animal
        execute.execute(animal2);  // animal
        execute.execute(animal3);  // animal
    }
}

重载方法的分派是根据静态类型进行的,这个分派过程在编译时期就完成了。

双分派

在选择一个方法的时候,不仅仅要根据消息接收者的运行时区别,还要根据参数的运行时区别

public class Animal {
    public void accept(Execute execute){
        execute.execute(this);
    }
}

public class Dog extends Animal{
    public void accept(Execute execute) {
        execute.execute(this);
    }
}

public class Cat extends Animal{
    public void accept(Execute execute) {
        execute.execute(this);
    }
}

public class Execute{
    public void execute(Animal animal){
        System.out.println("animal");
    }
    public void execute(Cat cat){
        System.out.println("cat");
    }
    public void execute(Dog dog){
        System.out.println("dog");
    }
}

public class Test{
    public static void main(String[] args) {
        Animal animal = new Animal();
        Animal animal2 = new Cat();
        Animal animal3 = new Dog();

        Execute execute = new Execute();
        animal.accept(execute);  // animal
        animal2.accept(execute); // cat
        animal3.accept(execute); // dog
    }
}

上面代码中,客户端将Execute对象作为参数传递给Animal类型的变量调用的方法,这里完成第一次分派,这里是方法重写,所以是动态分派,也就是执行实际类型中的方法,同时也是将自己this作为参数传递进去,这里就完成了第二次分派,这里的Execute类中有多个重载的方法,而传递进行的是this,就是具体的实际类型的对象。
双分派实现动态绑定的本质,就是在重载方法委派的前面加上了继承体系中覆盖的环节,由于覆盖是动态的,所以重载就是动态的了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/256197.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java异常】idea 报错:无效的目标发行版:17 的解决办法

【Java异常】idea 报错&#xff1a;无效的目标发行版&#xff1a;17 的解决办法 一&#xff0c;问题来源 springcloud的第一个demo项目就给我干趴了 二、原因分析 java: 无效的目标发行版: 17 原因就是 JDK 版本不对。从 IDEA 编辑器中可以找到问题的原因所在&#xff0c;…

Linux--fork创建子进程详解

目录 一.初识fork函数 二.fork的返回值 三.fork原理 1.fork是如何创建子进程的&#xff1f; 2.为什么fork会有两个返回值&#xff1f; 3.为什么父进程的返回值是子进程的pid&#xff0c;子进程返回值是0&#xff1f; 4.fork之后&#xff0c;父子进程谁先运行&#xff1f;…

【Python 基础】-- 在 mac OS 中安装 多个 python 版本

目录 1、需求 2、实现 2.1 安装 pyenv 2.2 安装 pyenv-virtualenv 2.3 配置环境变量 2.4 创建 python 3.9.9 的环境 2.5 激活环境&#xff0c;在当前项目目录中使用&#xff0c;即执行 python 1、需求 由于项目所依赖的 python 版本有多个&#xff0c;需要在不同的 pyth…

axios请求封装

http.js // untils / http.js //导入封装好的axios实例 import request from ./requestconst http {get(url, params) {const config {method: get,url: url}if (params) config.params paramsreturn request(config)},post(url, params) {const config {method: post,url…

深入浅出RPC:选取适合自己的RPC

文章目录 1、RPC概念&&背景1.1、RPC背景 1.2、RPC是什么&#xff0c;什么时候需要用到&#xff1f;2、进程间的通信 - IPC与RPC2.1、什么是IPC2.2、IPC与RPC联系 3、RPC的实现3.1、RPC实现的基本思路3.2、RPC实现的扩展方向 4、RPC的选择 1、RPC概念&&背景 1.…

Elasticsearch——快速入门

从零基础的内容开始介绍Elasticsearch&#xff0c;主要包含以下内容&#xff1a; Elasticsearch的定义、优点&#xff0c;以及典型的业务场景。Elasticsearch中重要的概念。Elasticsearch典型的接入方式。安装Elasticsearch。使用Kibana调试Elasticsearch。Elasticsearch节点的…

【LeetCode刷题笔记(8-3)】【Python】【接雨水】【双指针】【困难】

文章目录 引言接雨水题目描述提示 解决方案3&#xff1a;【双指针】结束语 接雨水 【LeetCode刷题笔记&#xff08;8-1&#xff09;】【Python】【接雨水】【动态规划】【困难】 【LeetCode刷题笔记&#xff08;8-2&#xff09;】【Python】【接雨水】【单调栈】【困难】 引言…

从如何使用到如何实现一个Promise

promise是什么&#xff1f;主要用来解决什么问题&#xff1f; Promise是异步编程的一种解决方案&#xff0c;比传统解决方案--回调函数和事件--更合理更强大。 Promise特点&#xff1a; &#xff08;1&#xff09;对象的状态不受外界影响。Promise对象代表一个异步操作&…

ModuleNotFoundError: No module named ‘openai.error‘

ModuleNotFoundError: No module named ‘openai.error’ result self.fn(*self.args, **self.kwargs) File “H:\chatGPTWeb\chatgpt-on-wechat\channel\chat_channel.py”, line 168, in _handle reply self._generate_reply(context) File “H:\chatGPTWeb\chatgpt-on-wec…

2023_Spark_实验二十九:Flume配置KafkaSink

实验目的&#xff1a;掌握Flume采集数据发送到Kafka的方法 实验方法&#xff1a;通过配置Flume的KafkaSink采集数据到Kafka中 实验步骤&#xff1a; 一、明确日志采集方式 一般Flume采集日志source有两种方式&#xff1a; 1.Exec类型的Source 可以将命令产生的输出作为源&…

性能加速包: SpringBoot 2.7JDK 17,你敢尝一尝吗 | 京东物流技术团队

前言 众所周知&#xff0c;SpringBoot3.0迎来了全面支持JDK17的局面&#xff0c;且最低支持版本就是JDK17&#xff0c;这就意味着&#xff0c;Spring社区将完全抛弃JDK8&#xff0c;全面转战JDK17。作为JAVA开源生态里的扛把子&#xff0c;Spring可以说是整个JAVA生态的风向标…

(8)Linux Makefile | 依赖关系,依赖方法

&#x1f4ad;前言&#xff1a; 本篇文章会着重讲解Linux中的自动化构建代码工具: make/makefile的介绍与使用。 在Linux下编译代码时,每次都会输入 gcc code.c -o code.exe在删除可执行程序时,每次都会输入 rm -rf code.exe这样非常的不方便,很麻烦,于是乎学习自动化构建代…

原来Python的协程有2种实现方式

什么是协程 在 Python 中&#xff0c;协程&#xff08;Coroutine&#xff09;是一种轻量级的并发编程方式&#xff0c;可以通过协作式多任务来实现高效的并发执行。协程是一种特殊的生成器函数&#xff0c;通过使用 yield 关键字来挂起函数的执行&#xff0c;并保存当前的执行…

《Effective C++》学习笔记 续

条款31&#xff1a;将文件间编译依存关系降至最低 请记住&#xff1a; 支持”编译依存性最小化“的一般构想是&#xff1a;相依于声明式&#xff0c;不要相依于定义式。基于此构想的两个手段是Handle class和Interface class程序库头文件应该以”完全且仅有声明式“的形式存在…

uniapp 用于开发H5项目展示饼图,使用ucharts 饼图示例

先下载ucharts H5示例源码&#xff1a; uCharts: 高性能跨平台图表库&#xff0c;支持H5、APP、小程序&#xff08;微信小程序、支付宝小程序、钉钉小程序、百度小程序、头条小程序、QQ小程序、快手小程序、360小程序&#xff09;、Vue、Taro等更多支持canvas的框架平台&#…

网络安全之Linux环境配置及Linux基础知识讲解<三>

目录 一.下载安装Vmware二.下载安装Kali三.Linux目录结构四.Linux文件属性五.文件目录管理六.vim编辑器 一.下载安装Vmware Vmware官网&#xff1a;https://www.vmware.com 二.下载安装Kali Kali包含数百种工具&#xff0c;可用于各种信息安全任务&#xff0c;例如渗透测试、…

(C++)将x减到0的最小操作数--滑动窗口

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://le…

微机总线地址物理内存地址虚拟内存地址简介

硬件地址的相关概念 Raspberry Pi 发布适用于 ARM 外设的 BCM2835 数据表 地址映射 总线地址 物理地址 虚拟地址 页表和内存管理单元MMU 《 Linux内核设计与实现&#xff08;第三版&#xff09;》 树莓派博通BCM2835芯片手册 硬件地址的相关概念 总线地址 32位的操作系统 &…

【赠书活动】OpenCV4工业缺陷检测的六种方法

文章目录 前言机器视觉缺陷检测工业上常见缺陷检测方法延伸阅读推荐语 赠书活动 前言 随着工业制造的发展&#xff0c;对产品质量的要求越来越高。工业缺陷检测是确保产品质量的重要环节&#xff0c;而计算机视觉技术的应用能够有效提升工业缺陷检测的效率和精度。 OpenCV是一…

【机器学习】卷积神经网络(CNN)的特征数计算

文章目录 基本步骤示例图解过程 基本步骤 在卷积神经网络&#xff08;CNN&#xff09;中&#xff0c;计算最后的特征数通常涉及到以下步骤&#xff1a; 确定输入尺寸&#xff1a; 首先&#xff0c;你需要知道输入数据的尺寸。对于图像数据&#xff0c;这通常是 (batch_size, c…