YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)

 一、本文介绍

本文给大家带来的改进是Triplet Attention三重注意力机制。这个机制,它通过三个不同的视角来分析输入的数据,就好比三个人从不同的角度来观察同一幅画,然后共同决定哪些部分最值得注意。三重注意力机制的主要思想是在网络中引入了一种新的注意力模块,这个模块包含三个分支,分别关注图像的不同维度。比如说,一个分支可能专注于图像的宽度,另一个分支专注于高度,第三个分支则聚焦于图像的深度,即色彩和纹理等特征。这样一来,网络就能够更全面地理解图像内容,就像是得到了一副三维眼镜,能够看到图片的立体效果一样。

 推荐指数:⭐⭐⭐⭐

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

训练结果对比图->  

​​​​​​​


二、Triplet Attention机制原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 Triplet Attention的基本原理 

三重注意力(Triplet Attention)的基本原理是利用三支结构捕获输入数据的跨维度交互,从而计算注意力权重。这个方法能够构建输入通道或空间位置之间的相互依赖性,而且计算代价小。三重注意力由三个分支组成,每个分支负责捕获空间维度H或W与通道维度C之间的交互特征。通过对每个分支中的输入张量进行排列变换,然后通过Z池操作和一个大小为k×k的卷积层,生成注意力权重。这些权重是通过一个S形激活层生成的,然后应用于排列变换后的输入张量,再变换回原来的输入形状 

三重注意力(Triplet Attention)的主要改进点包括:

  1. 跨维度的注意力权重计算: 通过一个创新的三支结构捕获通道、高度、宽度三个维度之间的交互关系来计算注意力权重。

  2. 旋转操作和残差变换: 通过旋转输入张量和应用残差变换来建立不同维度间的依赖,这是三重注意力机制中的关键步骤。

  3. 维度间依赖性的重要性: 强调在计算注意力权重时,捕获跨维度依赖性的重要性,这是三重注意力的核心直觉和设计理念。

下面的图片是三重注意力的一个抽象表示图,展示了三个分支如何捕获跨维度交互。图中的每个子图表示三重注意力中的一个分支: 

1. 分支(a): 这个分支直接处理输入张量,没有进行旋转,然后通过残差变换来提取特征。

2. 分支(b): 这个分支首先沿着宽度(W)和通道(C)的维度旋转输入张量,然后进行残差变换。

3. 分支(c): 这个分支沿着高度(H)和通道(C)的维度旋转输入张量,之后同样进行残差变换。

总结:通过这样的设计,三重注意力模型能够有效地捕获输入张量中的空间和通道维度之间的交互关系。这种方法使模型能够构建通道与空间位置之间的相互依赖性,提高模型对特征的理解能力。


2.2 Triplet Attention和其它简单注意力机制的对比 

下面的图片是论文中三重注意力机制和其它注意力机制的一个对比大家有兴趣可以看看,横向扩展以下自己的知识库。

这张图片是一幅对比不同注意力模块的图示,其中包括:

1.Squeeze Excitation (SE) Module:
这个模块使用全局平均池化 (Global Avg Pool) 生成通道描述符,接着通过两个全连接层(1x1 Conv),中间使用ReLU激活函数,最后通过Sigmoid函数生成每个通道的权重。

2. Convolutional Block Attention Module (CBAM):
首先使用全局平均池化和全局最大池化(GAP + GMP)结合,再通过一个卷积层和ReLU激活函数,最后经过另一个卷积层和Sigmoid函数生成注意力权重。

3. Global Context (GC) Module:
从一个1x1卷积层开始,经过Softmax函数进行归一化,接着进行另一个1x1卷积,然后使用LayerNorm和最终的1x1卷积,通过广播加法结合原始特征图。

4. Triplet Attention (我们的方法):
分为三个分支,每个分支进行不同的处理:通道池化后的7x7卷积,Z池化,再接一个7x7卷积,然后是批量归一化和Sigmoid函数。每个分支都有一个Permute操作来调整维度。最后,三个分支的结果通过平均池化聚合起来生成最终的注意力权重。

每种模块都设计用于处理特征图(C x H x W),其中C是通道数,H是高度,W是宽度。这些模块通过不同方式计算注意力权重,增强网络对特征的重要部分的关注度,从而在各种视觉任务中提高性能。图片中的符号⊗代表矩阵乘法,⊕代表广播元素级加法。


2.3 Triplet Attention的实现流程

下面的图片是三重注意力(Triplet Attention)的具体实现流程图。图中详细展示了三个分支如何处理输入张量,并最终合成三重注意力。下面是对这个过程的描述: 

  1. 上部分支: 负责计算通道维度C和空间维度W的注意力权重。这个分支对输入张量进行Z池化(Z-Pool)操作,然后通过一个卷积层(Conv),接着用Sigmoid函数生成注意力权重。

  2. 中部分支: 负责捕获通道维度C与空间维度H和W之间的依赖性。这个分支首先进行相同的Z池化和卷积操作,然后同样通过Sigmoid函数生成注意力权重。

  3. 下部分支: 用于捕获空间维度之间的依赖性。这个分支保持输入的身份(Identity,即不改变输入),执行Z池化和卷积操作,之后也通过Sigmoid函数生成注意力权重。

每个分支在生成注意力权重后,会对输入进行排列(Permutation),然后将三个分支的输出进行平均聚合(Avg),最终得到三重注意力输出。

这种结构通过不同的旋转和排列操作,能够综合不同维度上的信息,更好地捕获数据的内在特征,同时这种方法在计算上是高效的,并且可以作为一个模块加入到现有的网络架构中,增强网络对复杂数据结构的理解和处理能力。


三、Triplet Attention的核心代码

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。

import torch
import torch.nn as nn
from ..common import Conv

class BasicConv(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
                 bn=True, bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
                              dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class ZPool(nn.Module):
    def forward(self, x):
        return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)


class AttentionGate(nn.Module):
    def __init__(self):
        super(AttentionGate, self).__init__()
        kernel_size = 7
        self.compress = ZPool()
        self.conv = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.conv(x_compress)
        scale = torch.sigmoid_(x_out)
        return x * scale


class TripletAttention(nn.Module):
    def __init__(self, no_spatial=False):
        super(TripletAttention, self).__init__()
        self.cw = AttentionGate()
        self.hc = AttentionGate()
        self.no_spatial = no_spatial
        if not no_spatial:
            self.hw = AttentionGate()

    def forward(self, x):
        x_perm1 = x.permute(0, 2, 1, 3).contiguous()
        x_out1 = self.cw(x_perm1)
        x_out11 = x_out1.permute(0, 2, 1, 3).contiguous()
        x_perm2 = x.permute(0, 3, 2, 1).contiguous()
        x_out2 = self.hc(x_perm2)
        x_out21 = x_out2.permute(0, 3, 2, 1).contiguous()
        if not self.no_spatial:
            x_out = self.hw(x)
            x_out = 1 / 3 * (x_out + x_out11 + x_out21)
        else:
            x_out = 1 / 2 * (x_out11 + x_out21)
        return x_out


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.Dattention = TripletAttention()
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.Dattention(self.cv2(self.cv1(x))) if self.add else self.Dattention(self.cv2(self.cv1(x)))

class C3_TripleA(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


四、手把手教你添加Triplet Attention

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 Triplet Attention的yaml文件

4.2.1 Triplet Attention的yaml文件一

下面的配置文件为我修改的Triplet Attention的位置,参数的位置里面什么都不用添加空着就行,大家复制粘贴我的就可以运行,同时我提供多个版本给大家,根据我的经验可能涨点的位置。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3_TripleA, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3_TripleA, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3_TripleA, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3_TripleA, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3_TripleA, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3_TripleA, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3_TripleA, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3_TripleA, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


4.2.2 Triplet Attention的yaml文件二

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3_TripleA, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3_TripleA, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3_TripleA, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


4.2.3 Triplet Attention的yaml文件三

注意此版本的我再大目标,小目标,中目标三个曾的后面添加了一个注意力机制,此版本需要显存较大,可以根据自己的需求增删,如果修改大家要注意修改Detect里面的检测层数。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
   [-1, 1, TripletAttention, []], # 18

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)
   [-1, 1, TripletAttention, []], # 22

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 25 (P5/32-large)
   [-1, 1, TripletAttention, []], # 26

   [[18, 22, 26], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

4.3 Triplet Attention运行成功截图

附上我的运行记录确保我的教程是可用的。 

4.4 推荐Triplet Attention可添加的位置 

Triplet Attention是一种即插即用的可替换注意力机制的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入Triplet Attention(yaml文件一)。

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C3_TripletA可以帮助模型更有效地融合不同层次的特征(yaml文件二)

  3. 检测头:可以再检测头前面添加(yaml文件三)

  4. 检测头中:可以再检测头的内部添加该机制(未提供因为需要修改检测头比较麻烦,后期专栏收费后大家购买专栏之后大家会得到一个包含上百个机制的v5文件里面包含所有的改进机制)


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~)如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/256042.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Gitlab仓库推送到Gitee仓库的一种思路

文章目录 Gitlab仓库推送到Gitee仓库的一种思路1、创建Gitee的ssh公钥(默认已有Gitlab的ssh公钥)2、添加Gitlab远程仓库地址3、添加Gitee远程仓库地址4、拉取Gitlab远程仓库指定分支到本地仓库指定分支(以test分支为例)5、推送本地…

Elasticsearch的批量bulk 提交 写入的方式会有顺序问题吗?

Elasticsearch的分布式特性可能会导致写入操作的执行顺序与提交顺序稍有不同。在分布式环境中,Elasticsearch将数据分散到不同的节点上进行存储和处理,因此写入操作的执行顺序可能会受到网络延迟、负载均衡等因素的影响。 根源在于ES的分布式架构。如上图所示,客户端的命令首…

蓝桥杯嵌入式——KEY

CUBE里将这几个引脚配置成GPIO输入模式,再同时选中,配置成上拉,如下图: 同时配置定时器,定时10ms,每10ms扫描一次按键,计算公式:80 000 000 / 80 / 10000 100HZ 10ms,配…

C语言-第十六周课堂总结-数组

引用 先定义,后使用只能引用单个的数组元素,不能一次引用整个数组 int a[10]; 10个数组元素:a[0]、a[1]、…、a[9] 数组元素:数组名[下标] 下标:整形表达式 下标取值范围:[0,数组长度-1]数组元…

解决win11杀毒(不能安装破解软件的问题)

1、下载火绒APP,打开火绒APP软件 2、点击菜单,选择安全设置 3、选择病毒防护,修改病毒处理方式为询问我 4、这样在解压激活的软件就不会被windows的杀毒软件自动删除了 5、问题解决了就点击三连吧

JVM虚拟机系统性学习-JVM调优实战之内存溢出、高并发场景调优

调优实战-内存溢出的定位与分析 首先&#xff0c;对于以下代码如果造成内存溢出该如何进行定位呢&#xff1f;通过 jmap 与 MAT 工具进行定位分析 代码如下&#xff1a; public class TestJvmOutOfMemory {public static void main(String[] args) {List<Object> list…

Linux CentOS7安装harbor

1、下载harbor离线包 wget https://github.com/goharbor/harbor/releases/download/v2.4.2/harbor-offline-installer-v2.4.2.tgz 2、解压安装 tar -zxvf harbor-offline-installer-v2.4.2.tgz #解压离线安装包 3、配置harbor cd harbor #切换到harbor目录下…

100套风景+人物动物AI绘画关键词

1、10美元计划 Midjourney的10美元计划是最基础的计划&#xff0c;每月可以生成200张图&#xff0c;然而没有fast模式&#xff0c;也无法免排队生成图。相对于30美元和60美元计划&#xff0c;这个计划更适合个人用户或小型团队使用&#xff0c;仅用于少量图像的生成。如果你只…

Ubuntu 20.04 prometheus prometheus-process-exporter

prometheus-process-exporter 监控系统架构方案 https://blog.csdn.net/weixin_45801289/article/details/126922395 sudo apt install prometheus-process-exporter prometheus-process-exporter_0.4.0ds-1_amd64.deb service prometheus-process-exporter status netstat …

在linux上基于shell自动部署Java项目

一&#xff0c;安装git yum list git 列出git安装包 yum install git 在线安装git 使用 git -varsion 查看是否安装成功 安装成功 二&#xff0c; Git克隆代码 git clone 远程仓库地址 三&#xff0c;创建shell脚本 touch shell.sh shell脚本 #!/bin/sh echo echo 自动…

PowerShell实战(一)PowerShell使用ImportExcel模块轻松操作Excel

目录 一、介绍 二、安装模块 三、操作示例 1、导出excel 2、读取Excel数据 3、导出包含图表的Excel 4、导出包含汇总列和图表的Excel 一、介绍 ImportExcel模块可以理解为基于PowerShell环境操作Excel的强大类库&#xff0c;使用它可以在 Windows、Linux 和 Mac 上都可以使用。…

【Apache-StreamPark】Flink 开发利器 StreamPark 的介绍、安装、使用

【Apache-StreamPark】Flink 开发利器 StreamPark 的介绍、安装、使用 1&#xff09;框架介绍与引入1.1.&#x1f680; 什么是 StreamPark1.2.&#x1f389; Features1.3.&#x1f3f3;‍&#x1f308; 组成部分1.4.引入 StreamPark 2&#xff09;安装部署2.1.环境要求2.2.Hado…

linux系统和网络(一):文件IO

本文主要探讨linux系统编程的文件IO相关知识。 文件IO 文件存在块设备中为静态文件,open打开文件,内核在进程中建立打开文件的数据结构在内存中用于记录文件的文件参数,开辟一段内存用于存放内容,将静态文件转为动态文件 打开文件后对文件的读写操作都为对动态…

机器学习——支持向量机

目录 一、基于最大间隔分隔数据 二、寻找最大间隔 1. 最大间隔 2. 拉格朗日乘子法 3. 对偶问题 三、SMO高效优化算法 四、软间隔 五、SMO算法实现 1. 简化版SMO算法 2. 完整版SMO算法 3. 可视化决策结果 六、核函数 1. 线性不可分——高维可分 2. 核函数 …

Apache Flink(十五):Flink任务提交模式

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录

品牌价格管控的有效方法

当品牌渠道价格混乱&#xff0c;出现低价、乱价、窜货时&#xff0c;则需要进行价格的管控&#xff0c;包括使链接改价、下架、被删除等&#xff0c;如果放任低价链接不管&#xff0c;会使渠道越来越乱&#xff0c;当更多的低价出现时&#xff0c;品牌价值也会受影响。 价格管控…

Axure之交互与情节与一些实例

目录 一.交互与情节简介 二.ERP登录页到主页的跳转 三.ERP的菜单跳转到各个页面的跳转 四.省市联动 五.手机下拉加载 今天就到这里了&#xff0c;希望帮到你哦&#xff01;&#xff01;&#xff01; 一.交互与情节简介 "交互"通常指的是人与人、人与计算机或物体…

C/C++ 字符串char和string

字符串时存储在内存中的连续字节中的一系列字符。 C 处理字符串的方式有两种&#xff1a; 第1种&#xff0c;来自C语言&#xff0c;被成为C风格字符串。 第2种&#xff0c;基于string类库的方法。 存储连续字节中的一系列字符意味着可以将字符串存储在char数组中&#xff0c;其…

Linux系统中查看路由表的命令(ip route)

以下命令是在Linux系统中查看路由表的命令&#xff1a; 在Linux系统中&#xff0c;有多种方法可以查看路由设置。以下是一些常用的命令&#xff1a; ip route 或 ip -4 route&#xff08;IPv4&#xff09;/ ip -6 route&#xff08;IPv6&#xff09;&#xff1a; 这是最常用且功…

开源一个超好用的接口Mock工具——Msw-Tools

作为一名前端开发&#xff0c;是不是总有这样的体验&#xff1a;基础功能逻辑和页面UI开发很快速&#xff0c;本来可以提前完成&#xff0c;但是接口数据联调很费劲&#xff0c;耗时又耗力&#xff0c;有时为了保证进度还不得不加加班。 为了摆脱这种痛苦&#xff0c;经过一周的…