【LangChain学习之旅】—(1) 何谓 LangChain

Reference:LangChain 实战课

【LangChain学习之旅】— 何谓 LangChain

  • 如何理解 LangChain
  • LangChain 中的具体组件
  • LangChain调用ChatGPT
  • LangChain代理功能

如何理解 LangChain

  • 作为一种专为开发基于语言模型的应用而设计的框架,通过 LangChain,不仅可以通过 API 调用如 ChatGPT、GPT-4、Llama 2 等大型语言模型,还可以实现更高级的功能。
  • 正有潜力且具有创新性的应用,不仅仅在于能通过 API 调用语言模型,更重要的是能够具备以下两个特性:
    1. 数据感知:能够将语言模型与其他数据源连接起来,从而实现对更丰富、更多样化数据的理解和利用。
    2. 具有代理性:能够让语言模型与其环境进行交互,使得模型能够对其环境有更深入的理解,并能够进行有效的响应。
  • 因此,LangChain 框架的设计目标,是使这种 AI 类型的应用成为可能,并帮助我们最大限度地释放大语言模型的潜能。

总而言之,LangChain 是一个基于大语言模型(LLMs)用于构建端到端语言模型应用的框架,它可以让开发者使用语言模型来实现各种复杂的任务,例如文本到图像的生成、文档问答、聊天机器人等。LangChain 提供了一系列工具、套件和接口,可以简化创建由 LLMs 和聊天模型提供支持的应用程序的过程。

LangChain 中的具体组件

LangChain 中的具体组件包括:

  • 模型(Models),包含各大语言模型的 LangChain 接口和调用细节,以及输出解析机制。
  • 提示模板(Prompts),使提示工程流线化,进一步激发大语言模型的潜力。
  • 数据检索(Indexes),构建并操作文档的方法,接受用户的查询并返回最相关的文档,轻松搭建本地知识库。
  • 记忆(Memory),通过短时记忆和长时记忆,在对话过程中存储和检索数据,让 ChatBot 记住你是谁。
  • 链(Chains),是 LangChain 中的核心机制,以特定方式封装各种功能,并通过一系列的组合,自动而灵活地完成常见用例。
  • 代理(Agents),是另一个 LangChain 中的核心机制,通过“代理”让大模型自主调用外部工具和内部工具,使强大的“智能化”自主 Agent 成为可能!你的 App 将产生自驱力!
  • 在这里插入图片描述

LangChain调用ChatGPT

  1. pip install langchain 安装 LangChain
  2. pip install openai 来安装 OpenAI
  3. 在 OpenAI 网站注册属于自己的 OpenAI Key(淘宝1块钱可以买5$额度GPT3.5)。
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI Key'
from langchain.llms import OpenAI
llm = OpenAI(model_name="text-davinci-003",max_tokens=200)
text = llm("请问你是谁?")
print(text)

在这里插入图片描述

LangChain代理功能

你已经制作好了一批鲜花的推广海报,想为每一个海报的内容,写一两句话,然后 post 到社交平台上,以期图文并茂。这个需求,特别适合让 AI 帮你批量完成,不过,ChatGPT 网页可不能读图。下面,我们就用 LangChain 的“代理”调用“工具”来完成自己做不到的事情。在这里插入图片描述
我们就用一段简单的代码实现上述功能。这段代码主要包含三个部分:

  1. 初始化图像字幕生成模型(HuggingFace 中的 image-caption 模型)。
  2. 定义 LangChain 图像字幕生成工具。
  3. 初始化并运行 LangChain Agent(代理),这个 Agent 是 OpenAI 的大语言模型,会自动进行分析,调用工具,完成任务。

不过,这段代码需要的包比较多。在运行这段代码之前,你需要先更新 LangChain 到最新版本,安装 HuggingFace 的 Transformers 库(开源大模型工具),并安装 Pillow(Python 图像处理工具包)和 PyTorch(深度学习框架)

pip install --upgrade langchain
pip install transformers
pip install pillow
pip install torch torchvision torchaudio
#---- Part 0 导入所需要的类
import os
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
from langchain.tools import BaseTool
from langchain import OpenAI
from langchain.agents import initialize_agent, AgentType

#---- Part I 初始化图像字幕生成模型
# 指定要使用的工具模型(HuggingFace中的image-caption模型)
hf_model = "Salesforce/blip-image-captioning-large"

# 初始化处理器和工具模型
# 预处理器将准备图像供模型使用
processor = BlipProcessor.from_pretrained(hf_model)
# 然后我们初始化工具模型本身
model = BlipForConditionalGeneration.from_pretrained(hf_model)

#---- Part II 定义图像字幕生成工具类
class ImageCapTool(BaseTool):
   
    name = "Image captioner"
    description = "为图片创作说明文案."

    def _run(self, url: str):
        # 下载图像并将其转换为PIL对象
        image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
        # 预处理图像
        inputs = processor(image, return_tensors="pt")
        # 生成字幕
        out = model.generate(**inputs, max_new_tokens=20)
        # 获取字幕
        caption = processor.decode(out[0], skip_special_tokens=True)
        return caption
    
    def _arun(self, query: str):
        raise NotImplementedError("This tool does not support async")

#---- PartIII 初始化并运行LangChain智能代理
# 设置OpenAI的API密钥并初始化大语言模型(OpenAI的Text模型)
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'
llm = OpenAI(temperature=0.2)

# 使用工具初始化智能代理并运行它
tools = [ImageCapTool()]
agent = initialize_agent(
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    tools=tools,
    llm=llm,
    verbose=True,
)
img_url = 'https://mir-s3-cdn-cf.behance.net/project_modules/hd/eec79e20058499.563190744f903.jpg'
agent.run(input=f"{img_url}\n请给出合适的中文文案")

根据输入的图片 URL,由 OpenAI 大语言模型驱动的 LangChain Agent,首先利用图像字幕生成工具将图片转化为字幕,然后对字幕做进一步处理,生成中文推广文案。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/252394.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

07-抽象工厂

意图 提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 适用性 在以下的情况可以选择使用抽象工厂模式: 一个系统要独立于它的产品的创建、组合和表示。一个系统要由多个产品系列中的一个来配置。要强调一系列相关的产品对象的…

关于Ubuntu22.04恢复误删文件的记录

挂载在Ubuntu22.04下的固态盘有文件被误删了,该固态盘是ntfs格式的。 在网上找了很多教程,最后决定用TestDisk工具进行恢复。 现记录如下: Ubuntu安装testdisk sudo apt-get install testdisk运行testdisk sudo testdisk得到 我选择的是…

不是生活有意思,是你热爱生活它才有意思

明制汉服的设计 同样是一款很重工的外套 细节上也是做到了极致 顺毛毛呢面料 领口袖口拼接仿貂毛环保毛条 前胸欧根纱刺绣圆形布 袖子贴民族风珠片刺绣织带 门襟搭配金属子母扣,真盘扣设计 时尚经典,搭配马面裙孩子穿上 真的很有气质奢华富贵 …

Day10 Liunx高级系统设计11-数据库2

DQL:数据查询语言 查询全表 select * from 表名; 查询指定列 select 列名 1, 列名 2,… from 表名 ; 条件查询 select * from 表名 where 条件 ; 注意: 条件查询就是在查询时给出 WHERE 子句,在 WHERE 子句中可以使用如下运算符及关键 字&#…

某行 webpack 加密算法分析

本次的目标是某行购物网站的加密算法分析,网站如下 aHR0cHM6Ly93d3cuemtoLmNvbS8(注:该网站从整体上看来,是webpack加密,但是本文的实现方式,不是扣js代码也不补环境,因为最后分析此网站用的都…

把文化注入品牌,五粮液荣获“全国企业文化优秀成果特等奖”

执笔 | 萧 萧 编辑 | 扬 灵 12月15日,以“塑造优秀企业文化,凝聚企业发展力量”为主题的全国企业文化年会(2023)首次在长江首城、中国酒都、中国动力电池之都宜宾盛大举行。 凭借“弘扬和美文化,谱写高质量发展新篇章”成果…

基于FPGA的HDMI编码模块设计(包含工程源文件)

前文已经通过FPGA实现了TMDS视频编码的算法,也对单沿数据采样转双沿数据采样的ODDR原语做了详细讲解和仿真验证,本文将这些模块结合,设计出HDMI编码模块,在HDMI接口的显示器上显示一张图片。 1、整体思路 如图1所示,是…

云计算:FusionCompute 通过 FreeNAS 添加SAN存储

目录 一、实验 1.环境准备 2.FusionCompute添加CNA 3.在存储中创建LUN资源映射给CNA节点 3.添加存储资源关联CNA主机节点 4.扫描存储资源 5.将存储设备添加为数据存储 二、问题 1.FusionCompute中存储如何分类 2.存储资源与存储设备有何区别 3.FusionCompute支持哪些…

一个球从100米高度自由落下,每次落地后反弹回原高度的一半,再落下再反弹,求它在第10次落地时共经过多少米,第10次反弹多高。

代码如下: 结果为: #include<stdio.h> int main() { double x 100.0, y0.0; for (int i 1; i < 10; i) { y x; x / 2; y x; } y - x; printf("第十次落地时共经过%lf米\n第十次反弹%lf米", y, x); return 0; }

Linux集群实用脚本

现有三台虚拟机&#xff0c;例如&#xff1a;node2、node3、node4 三台虚拟机配置了免密登录&#xff0c;安装了hadoop等软件。 相关集群实用脚本命令 统一执行jps命令 jpsall #!/bin/bash ​ for host in node2 node3 node4 doecho $host ssh $host jps done ​ 统一执行命…

华为组播配置案例

igmp-snooping主要用于生成二层组播表项&#xff0c;防止交换机全部接口都发组播报文 PC端配置&#xff1a; 组播源配置&#xff1a; R1 interface GigabitEthernet0/0/0 ip address 10.0.0.1 255.255.255.0 pim dm interface GigabitEthernet0/0/1 ip address 192.168.0…

云服务配置docker镜像容器以及常用操作命令

首先通过ssh进入云服务器。如何ssh进入云服务器。 简单讲解一下docker中镜像和容器&#xff0c;打个比方&#xff0c;镜像相当于印钱的那个模板&#xff0c;容器相当于从模板上拓下来的钱&#xff0c;不同的模板可以印出不同的钱。但容器被修改后也可以变成新的镜像&#xff0…

springboot229基于Spring Boot的企业员工薪酬关系系统的设计

springboot229基于Spring Boot的企业员工薪酬关系系统的设计 源码获取&#xff1a; https://docs.qq.com/doc/DUXdsVlhIdVlsemdX

数据结构之---- 动态规划

数据结构之---- 动态规划 什么是动态规划&#xff1f; 动态规划是一个重要的算法范式&#xff0c;它将一个问题分解为一系列更小的子问题&#xff0c;并通过存储子问题的解来避免重复计算&#xff0c;从而大幅提升时间效率。 在本节中&#xff0c;我们从一个经典例题入手&am…

Windows环境下QT应用程序的发布

时间记录&#xff1a;2023/12/17 1.生成版本介绍&#xff0c;debug&#xff1a;调试版本&#xff0c;携带调试信息&#xff0c;占用内存稍大一些&#xff0c;release&#xff1a;发布版本&#xff0c;一般开发完毕选择此套件进行编译生成可执行程序进行发布 2.发布步骤 &#x…

时序预测 | Python实现LSTM-Attention电力需求预测

时序预测 | Python实现LSTM-Attention电力需求预测 目录 时序预测 | Python实现LSTM-Attention电力需求预测预测效果基本描述程序设计参考资料预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从而可以将预期预测与当前最先进的行…

CentOS7安装Docker及添加阿里云镜像加速详细教程

Docker官方安装教程网站&#xff1a;Install Docker Engine on CentOS | Docker Docs 具体流程如下&#xff1a; 1.确定你是CentOS7及以上版本 cat /etc/redhat-release 2.yum安装gcc相关 yum -y install gcc yum -y install gcc-c 3.安装需要的软件包 3.1安装docker引擎…

Redis7--基础篇8(集群cluster)

1. 集群&#xff08;cluster&#xff09;介绍 由于数据量过大&#xff0c;单个Master复制集难以承担&#xff0c;因此需要对多个复制集进行集群&#xff0c;形成水平扩展每个复制集只负责存储整个数据集 的一部分&#xff0c;这就是Redis的集群&#xff0c;其作用是提供在多个…

Java技术栈 —— Log4j 2、Logpack、SLF4j日志框架介绍

Log4j 2、Logpack、SLF4j日志框架介绍 Log4j 2、Logpack、SLF4j日志框架&#xff0c;及其区别1.1 Log4j 21.1.1 日志级别1.1.2 日志输出目标位置1.1.3 日志刷新机制1.1.4 结构化打印日志1.1.5 异步打印日志1.1.6 在Cloud云环境汇集日志信息 1.2 LogPack1.3 SLF4j1.4 区别 Log4j…

Python Django Suit:构建现代化的Django后台管理

概要 Django Suit是一款为Django后台管理提供现代、优雅界面的第三方应用&#xff0c;它致力于提升Django开发者的管理体验。本文将深入介绍Django Suit的安装、配置和高级功能&#xff0c;提供详实的示例代码&#xff0c;帮助大家更好地使用和定制Django后台管理界面。 安装与…