智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.天牛须算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用天牛须算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.天牛须算法

天牛须算法原理请参考:网络博客
天牛须算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


天牛须算法参数如下:

%% 设定天牛须优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明天牛须算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/251291.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 常用命令之 ls 命令用法介绍

Ubuntu ls 命令用法介绍 ls是Linux系统下的一个基本命令,用于列出目录中的文件和子目录。它有许多选项可以用来改变列出的内容和格式。 以下是一些基本的ls命令选项 -l:以长格式列出文件,包括文件类型、权限、链接数、所有者、组、大小、最…

Java 第10、11章 本章作业

目录 6 综合编程题7 成员内部类应用8 枚举类 & switch 6 综合编程题 3. 交通工具工厂类:由于在任务中只需要调用其中获得交通工具的方法,可以将方法定义为静态方法,这样就不用先创建工厂类的对象,直接“类名.方法” 即可。为了…

基于Java SSM框架实现疫情居家办公OA系统项目【项目源码+论文说明】

基于java的SSM框架实现疫情居家办公OA系统演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所认识…

3.1 内容管理模块 - 工程搭建、课程查询、配置Swagger、数据字典

文章目录 内容管理模块一、基础工程搭建1.1 需求分析1.2 业务流程1.3 数据模型1.4 创建模块工程1.4.1 介绍1.4.2 xuecheng-plus-content 聚合工程1.4.3 模块演示 二、课程查询准备2.1 需求分析2.1.1 业务流程2.1.2 数据模型 2.2 生成PO类2.2.1 新增Maven配置2.2.2 课程基本信息…

文档安全加固:零容忍盗窃,如何有效预防重要信息外泄

文档安全保护不仅需要从源头着手,杜绝文档在使用和传播过程中产生的泄密风险,同时还需要对文档内容本身进行有效的保护。为了防范通过拷贝、截屏、拍照等手段盗窃重要文档内容信息的风险,迅软DSE加密软件提供了文档加密保护功能,能…

用23种设计模式打造一个cocos creator的游戏框架----(十八)责任链模式

1、模式标准 模式名称:责任链模式 模式分类:行为型 模式意图:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处…

MLX:苹果 专为统一内存架构(UMA) 设计的机器学习框架

“晨兴理荒秽,带月荷锄归” 夜深闻讯,有点兴奋~ 苹果为 UMA 设计的深度学习框架真的来了 统一内存架构 得益于 CPU 与 GPU 内存的共享,同时与 MacOS 和 M 芯片 交相辉映,在效率上,实现对其他框架的降维打…

Redis设计与实现之压缩列表

目录 一、 压缩列表 1、ziplist的构成 2、节点的构成 pre_entry_length encoding 和 length content 3、创建新 ziplist 4、将节点添加到末端 5、将节点添加到某个/某些节点的前面 6、删除节点 7、遍历 8、查找元素、根据值定位节点 二、小结 一、 压缩列表 Zipli…

论文降重同义词替换的实践经验与改进建议 快码论文

大家好,今天来聊聊论文降重同义词替换的实践经验与改进建议,希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧,可以借助此类工具: 标题:论文降重同义词替换的实践经验与改…

TS类型体操-简单-实现pick

文章目录 问题描述举例实现 问题描述 不使用 Pick<T, K> &#xff0c;实现 TS 内置的 Pick<T, K> 的功能。 从类型T 中选出符合 K 的属性&#xff0c;构造一个新的类型。 举例 interface Todo {title: stringdescription: stringcompleted: boolean }type TodoPre…

挖矿木马应急响应-案例分析

挖矿木马应急响应-案例分析 linux 终端无法使用系统资源使用异常高 首先解决linux命令无法使用的问题&#xff0c;显示libc.so.6 没有重新连接一下libc文件 查看日志 发现木马运行成功后就日志一直报libc错误 根据信息向上插在日志 向上发现&#xff0c;root用户被爆破后…

【Spring教程30】Spring框架实战:从零开始学习SpringMVC 之 Rest风格简介与RESTful入门案例

目录 1 REST简介2 RESTful入门案例2.1 环境准备2.2 思路分析2.3 修改RESTful风格 3 知识点总结 欢迎大家回到《Java教程之Spring30天快速入门》&#xff0c;本教程所有示例均基于Maven实现&#xff0c;如果您对Maven还很陌生&#xff0c;请移步本人的博文《如何在windows11下安…

windows 10 安装和配置nginx

1 下载nginx 1.1 下载地址&#xff1a;http://nginx.org/en/download.html 1.2 使用解压到安装目录 1.3 更改配置 conf目录下nginx.conf 修改为未被占用的端口&#xff0c;地址改成你的地址 server {listen 9999;server_name localhost;#charset koi8-r;#access_lo…

SQL进阶理论篇(八):SQL查询的IO成本

文章目录 简介数据库缓冲池查看缓冲池的大小数据页加载的三种方式通过 last_query_cost 统计 SQL 语句的查询成本总结参考文献 简介 本节将介绍磁盘IO是如何加载数据的&#xff0c;重点介绍一下数据库缓冲池的概念。主要包括&#xff1a; 什么是数据库缓冲池&#xff0c;它在…

云架构俭约之道七法则(The Frugal Architect)

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 亚马逊云科技开发者社区, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 文章目录 一、前言关于 Law 与 Rule 的区别 二、云架构俭约之道七法…

【算法刷题】每日打卡——动态规划(1)

背包问题 例题一 有 N件物品和一个容量是 V 的背包。每件物品只能使用一次。 第 i件物品的体积是 vi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输出最大价值。 输入格式 第一行两个整数…

深度学习python编译器的配置及法宝函数的作用

一、python编辑器的配置&#xff08;pycharm 和 jupyter&#xff09; &#xff08;1&#xff09;pycharm 在pycharm导入conda环境&#xff1a; 新建项目&#xff0c;更改编译器&#xff0c;选择已有的编译器 选择python.exe时会出现错误&#xff1a;找不到conda可执行文件 …

太空旅行:计算机技术的崭新航程

太空旅行&#xff1a;计算机技术的崭新航程 一、引言 自古以来&#xff0c;人类就对浩渺的宇宙充满了无尽的好奇和渴望。随着科技的飞速发展&#xff0c;太空旅行已经从科幻小说中的构想变为现实。在这个过程中&#xff0c;计算机技术起到了不可或缺的作用。从阿波罗时代的初…

EDT:On Efficient Transformer-Based Image Pre-training for Low-Level Vision

EDT&#xff1a;On Efficient Transformer-Based Image Pre-training for Low-Level Vision 论文地址&#xff1a;On Efficient Transformer-Based Image Pre-training for Low-Level Vision 代码地址&#xff1a;fenglinglwb/EDT: On Efficient Transformer-Based Image Pre…

知识付费小程序开发:技术实践示例

随着知识付费小程序的兴起&#xff0c;让我们一起来看一个简单的示例&#xff0c;使用Node.js和Express框架搭建一个基础的知识付费小程序后端。 首先&#xff0c;确保你已经安装了Node.js和npm。接下来&#xff0c;创建一个新的项目文件夹&#xff0c;然后通过以下步骤创建你…