大模型时代-大模型开发入门

一、 学习大模型的入门知识

深度学习基础知识:了解深度学习中的基本概念、算法和模型,包括神经网络、卷积神经网络、循环神经网络等。
编程能力:掌握至少一种编程语言,如Python、C++等,熟悉常用的深度学习框架,如TensorFlow、PyTorch等。
数学基础:具备高等数学、线性代数、概率论与数理统计等基础知识,以便更好地理解深度学习算法和模型。
机器学习基础:了解机器学习中的基本概念、算法和模型,如分类、回归、聚类等。
数据处理能力:熟悉数据处理的基本流程和方法,如数据清洗、数据预处理、数据可视化等。
以下是一个学习大模型的学习路线:

学习深度学习基础知识:了解深度学习的基本原理、算法和模型,包括神经网络、卷积神经网络、循环神经网络等。
学习编程语言和深度学习框架:掌握至少一种编程语言和深度学习框架,如Python和TensorFlow或PyTorch。
学习数据处理和分析:熟悉数据处理的基本流程和方法,如数据清洗、数据预处理、数据可视化等。
学习机器学习和统计知识:了解机器学习中的基本概念、算法和模型,如分类、回归、聚类等。同时,掌握常用的统计方法,如假设检验、方差分析等。
学习大模型的原理和应用:了解大模型的原理和应用场景,如自然语言处理、计算机视觉等。同时,掌握大模型的训练和部署方法。
实践项目和案例分析:通过实践项目和案例分析,加深对大模型的理解和应用。可以尝试使用大模型解决实际问题,如文本分类、图像识别等。
持续学习和跟进:随着技术的不断发展,大模型的应用场景和算法也在不断更新和完善。因此,需要持续学习和跟进最新的技术和应用。

二、学习大模型需要掌握以下Python知识


基础语法:了解Python的基本语法,包括变量、数据类型、控制流、函数等。
数据处理:熟悉Python中的数据类型,如列表、元组、字典、集合等,并掌握它们的基本操作。同时,了解如何使用Python进行数据处理,如数据清洗、数据预处理等。
科学计算:熟悉Python中的科学计算库,如NumPy、Pandas等,以便进行数值计算和数据分析。
机器学习库:了解并掌握常用的机器学习库,如Scikit-learn、TensorFlow、PyTorch等,以便使用大模型进行机器学习任务。
深度学习框架:熟悉并掌握深度学习框架,如TensorFlow、PyTorch等,以便进行大模型的训练和部署。
版本控制和代码调试:了解并掌握版本控制工具(如Git)和代码调试技巧,以便更好地管理和调试代码。

三、TensorFlow框架

TensorFlow是一个开源的机器学习库,由谷歌大脑团队开发。它被广泛应用于各类机器学习算法的编程实现,包括深度神经网络和其他神经网络。TensorFlow采用数据流图(data flow graphs)的形式,节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

TensorFlow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究。同时,TensorFlow也拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API)。

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。它既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

四、PyTorch框架

PyTorch的主要特点包括:

张量计算能力:PyTorch提供了一个多维数组(也称为张量)的数据结构,该数据结构可用于执行各种数学运算。它也提供了用于张量计算的丰富库。
自动微分:PyTorch通过其Autograd模块提供自动微分功能,这对于梯度下降和优化非常有用。
动态计算图:与其他深度学习框架(如TensorFlow的早期版本)使用静态计算图不同,PyTorch使用动态计算图。这意味着图在运行时构建,这使得更灵活的模型构建成为可能。
简洁的API:PyTorch的API设计得直观和易于使用,这使得开发和调试模型变得更加简单。
Python集成:由于PyTorch紧密集成了Python,因此它可以轻松地与Python生态系统(包括NumPy、SciPy和Matplotlib)协同工作。
社群和生态系统:由于其灵活性和易用性,PyTorch赢得了大量开发者和研究人员的喜爱。这导致了一个活跃的社群以及大量的第三方库和工具。
多平台和多后端支持:PyTorch不仅支持CPU,还支持NVIDIA和AMD的GPU。它也有一个生产就绪的部署解决方案——TorchServe。
丰富的预训练模型和工具箱:通过torchvision、torchaudio和torchtext等库,PyTorch提供了丰富的预训练模型和数据加载工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/251244.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

解锁数据探索新时代,JetBrains DataGrip 2023 Mac/win中文版下载

JetBrains DataGrip 2023 Mac/win,作为一款全新的数据库管理和开发工具,为数据工程师、分析师和开发人员提供了强大的功能和工具,帮助他们更高效地处理和分析数据。无论你是使用Mac还是Windows系统,都能够通过这款软件轻松驾驭数据…

【halcon深度学习】目标检测的数据准备过程中的一个库函数determine_dl_model_detection_param

determine_dl_model_detection_param “determine_dl_model_detection_param” 直译为 “确定深度学习模型检测参数”。 这个过程会自动针对给定数据集估算模型的某些高级参数,强烈建议使用这一过程来优化训练和推断性能。 过程签名 determine_dl_model_detection…

【JAVA日志框架】JUL,JDK原生日志框架详解。

前言 Java日志体系混乱?Java日志框架系列,清晰简洁整理好整个Java的日志框架体系。第一篇,JDK原生日志框架——JUL。 目录 1.概述 2.日志级别 3.配置 4.继承关系 1.概述 日志框架的核心问题: 日志是用来记录应用的一些运行…

听GPT 讲Rust源代码--src/tools(13)

File: rust/src/tools/rust-analyzer/crates/ide-diagnostics/src/handlers/incoherent_impl.rs 在Rust源代码中,路径为rust/src/tools/rust-analyzer/crates/ide-diagnostics/src/handlers/incoherent_impl.rs的文件是为了处理Rust代码中的不一致实现问题而存在的。…

蓝桥杯专题-真题版含答案-【骑士走棋盘】【阿姆斯壮数】【Shell 排序法 - 改良的插入排序】【合并排序法】

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分…

自定义时间选择器

自定义时间选择器 文章目录 自定义时间选择器第一章 效果演示第01节 效果图第02节 主要文件 第二章 案例代码第01节 核心文件 WheelPicker第02节 实体类 WheelBean第03节 接口类 IWheelPicker第04节 原子时间类 DateTimePickerView第05节 原子时间类 PickerYear第06节 原子时间…

网络(七)路由协议以及相关配置

目录 一、路由器的工作原理 二、路由表的形成 2.1 直连网段 2.2 非直连网 2.3 路由表解析 2.3.1 查看路由表 2.3.2 解析 三、静态路由和默认路由 1. 静态路由 1.1 定义 1.2 特点 2. 默认路由 2.1 定义 2.2 特点 四、静态路由和默认路由的配置 1. 静态路由配置…

maui中实现加载更多 RefreshView跟ListView(1)

效果如图: MainPage.xaml.cs: using System; using System.Collections.ObjectModel; using System.Threading.Tasks; using Microsoft.Maui.Controls; using Microsoft.Maui.Controls.Xaml; using System.ComponentModel; using System.Runtime.CompilerServices…

visual stdio code运行js没有输出

visual code运行js没有输出 先Debug file 然后右键直接run code就会输出了 插件的安装 visual stdio code插件安装 c qt wordle游戏实现

知识图谱之关键实体数据爬取

目录 爬取实体概览 爬取技术介绍 requests_html Selenium 两者比较 学习路径 代码结构 高可用爬取策略 基于文件记录位点 请求失败指数退避重试 爬取代码 品牌数据 车系数据 车型数据 车型配置数据 代码地址 爬取实体概览 一个品牌有多个车系,一个车系有多个…

C语言:猜数字游戏

#include<stdio.h> #include<time.h> #include<stdlib.h> void menu() {printf("********************************\n");printf("****** 1.开始 2.退出 ******\n");printf("********************************\n"); } voi…

论文阅读笔记(12月15)--DialogXL

论文阅读笔记(12月15)–DialogXL 基本情况介绍&#xff1a; 作者&#xff1a;Weizhou Shen等 单位&#xff1a;中山大学 时间&期刊&#xff1a;AAAI 2021 主题&#xff1a;对话情绪识别(ERC)–文本模态 论文链接&#xff1a;https://ojs.aaai.org/index.php/AAAI/article…

MX6ULL学习笔记(十二)Linux 自带的 LED 灯

前言 前面我们都是自己编写 LED 灯驱动&#xff0c;其实像 LED 灯这样非常基础的设备驱动&#xff0c;Linux 内 核已经集成了。Linux 内核的 LED 灯驱动采用 platform 框架&#xff0c;因此我们只需要按照要求在设备 树文件中添加相应的 LED 节点即可&#xff0c;本章我们就来学…

算法:二叉树的遍历

一、31种遍历方法 (1)先序法&#xff08;又称先根法&#xff09; 先序遍历&#xff1a;根&#xff0c;左子树&#xff0c;右子树 遍历的结果&#xff1a;A&#xff0c;B&#xff0c;C 遍历的足迹&#xff1a;沿途经过各结点的“左部” (2)中序法&#xff08;又称中根法&#…

【MySQL内置函数】

目录&#xff1a; 前言一、日期函数获取日期获取时间获取时间戳在日期上增加时间在日期上减去时间计算两个日期相差多少天当前时间案例&#xff1a;留言板 二、字符串函数查看字符串字符集字符串连接查找字符串大小写转换子串提取字符串长度字符串替换字符串比较消除左右空格案…

【ArkTS】Watch装饰器

Watch装饰器&#xff0c;相当于Vue中的监听器 以及 React中使用useEffect监听变量 使用Watch装饰器&#xff0c;可以监听一个数据的变化&#xff0c;并进行后续的响应。 使用方法&#xff1a; Watch(‘回调函数’)&#xff0c;写在State装饰器后&#xff08;其实写在前面也行&a…

在thinkphp5.1 自定义验证规则 获取get 传递的值的时候 传递了 值 能够获取到 验证出错

控制器: public function teamDetail(){if(request()->isGet()){$team_id $this->request->get(team_id, );$this->validate->scene(teamDetail)->check($team_id);if ($this->validate->getError()) {return resultArray(lang(strval($this->vali…

Matcap的原理和应用

一、概念和原理 2.1 什么是Matcap 什么是Matcap&#xff1f;Matcap实际上是Material Capture的缩写&#xff0c;即材质捕捉。实际上&#xff0c;这是一种离线渲染方案。类似光照烘焙&#xff0c;将光照或者其它更复杂环境下的渲染数据存储到一张2D贴图上&#xff0c; 再从这张…

Python读写arxml文件

文章目录 前言一、XML简介二、XML文件结构三、Python读取xml文件安装ElementTree库读取xml文件四、Python写入xml文件前言 本文主要通过介绍arxml文件,为后续python脚本开发奠定基础。 arxml是AUTOSAR XML的简称,是一个通用的配置/数据库文件,实质是一个xml文件。 ①更规范…

Swin-Transformer 在图像识别中的应用

1. 卷积神经网络简单介绍 图像识别任务主要利用神经网络对图像进行特征提取&#xff0c;最后通过全连接层将特征和分类个数进行映射。传统的网络是利用线性网络对图像进行分类&#xff0c;然而图像信息是二维的&#xff0c;一般来说&#xff0c;图像像素点和周围邻域像素点相关…