基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

系列文章目录

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)


目录

  • 系列文章目录
  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
  • 模块实现
    • 1. 数据预处理
    • 2. 数据增强
    • 3. 普通CNN模型
      • 1)模型结构
      • 2)模型优化
      • 3)模型训练
      • 4)模型保存
    • 4. 残差网络模型
      • 1)残差网络的介绍
      • 2)模型结构
      • 3)模型训练
      • 4)模型保存
    • 5. 模型生成
      • 1)搭建Django项目
      • 2)输入图片并预测
      • 3)链接数据库
      • 4)美化网页
  • 系统测试
    • 1. 训练准确率
      • 1)普通网络模型准确率
      • 2)残差网络模型准确率
      • 3)数据增强后残差网络模型准确率
    • 2. 测试效果
    • 3. 模型应用
  • 其他相关博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目以卷积神经网络(CNN)模型为基础,对收集到的猫咪图像数据进行训练。通过采用数据增强技术和结合残差网络的方法,旨在提高模型的性能,以实现对不同猫的种类进行准确识别。

首先,项目利用CNN模型,这是一种专门用于图像识别任务的深度学习模型。该模型通过多个卷积和池化层,能够有效地捕捉图像中的特征,为猫的种类识别提供强大的学习能力。

其次,通过对收集到的数据进行训练,本项目致力于建立一个能够准确辨识猫的种类的模型。包括各种猫的图像,以确保模型能够泛化到不同的种类和场景。

为了进一步提高模型性能,采用了数据增强技术。数据增强通过对训练集中的图像进行旋转、翻转、缩放等操作,生成更多的变体,有助于模型更好地适应不同的视角和条件。

同时,引入残差网络的思想,有助于解决深层网络训练中的梯度消失问题,提高模型的训练效果。这种结合方法使得模型更具鲁棒性和准确性。

最终,通过本项目,实现了对猫的种类进行精准识别的目标。这对于宠物领域、动物学研究等方面都具有实际应用的潜力,为相关领域提供了一种高效而可靠的工具。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括计算型云服务器、Python环境、TensorFlow环境和MySQL环境。

详见博客。

模块实现

本项目包括5个模块:数据预处理、数据增强、普通CNN模型、残差网络模型、模型生成。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

打开浏览器,分别搜索布偶猫、孟买猫、暹罗猫和英国短毛猫的图片。用批量下载器下载图片,筛选出特征明显的图片作为数据集。使用的图片包含101张布偶猫、97张孟买猫、101张逼罗猫以及85张英国短毛猫,共计384张图片。(其中在工程代码中/cat_kind_model/cat_data_100/cat_kind_model/cat_data_224也可下载)

详见博客。

2. 数据增强

所谓数据增强,是通过翻转、旋转、比例缩放、随机裁剪、移位、添加噪声等操作对现有数据集进行拓展。本项目中数据量较小,无法提取图片的深层特征,使用深层的残差网络时易造成模型过拟合。

详见博客。

3. 普通CNN模型

处理图片数据格式后,转换为数组作为模型的输入,并根据文件名提取标签,定义模型结构、优化器、损失函数和性能指标。本项目使用Keras提供类似VGG的卷积神经网络。

1)模型结构

详见博客。

2)模型优化

详见博客。

3)模型训练

详见博客。

4)模型保存

详见博客。

4. 残差网络模型

本部分包括残差网络的介绍、模型结构以及模型训练。

1)残差网络的介绍

详见博客。

2)模型结构

详见博客。

3)模型训练

详见博客。

4)模型保存

详见博客。

5. 模型生成

模型应用主要有3部分:一是从本地相册输入猫的图片;二是把输入的图片转换成数据,在输入训练好的模型中进行预测;三是根据预测结果输出数据库中预存的相关信息。

1)搭建Django项目

详见博客。

2)输入图片并预测

详见博客。

3)链接数据库

详见博客。

4)美化网页

详见博客。

系统测试

本部分包括训练准确率、测试效果及模型应用。

1. 训练准确率

经过训练,普通网络在原始数据集上的准确率为73.2%;残差在原始数据集上的准确率为85.4%;残差在数据增强后的准确率为99.3%。

1)普通网络模型准确率

普通网络模型训练结果如图1所示,准确率为73%,预测模型效果不够理想,其原因是数据集太小且图片背景复杂,无法提供更多的信息,模型的深度不够,无法提取更深层次的信息。普通网络模型在测试集上的准确率如图2所示。

在这里插入图片描述

图1 普通网络模型训练结果

在这里插入图片描述

图2 普通网络模型在测试集上的准确率

2)残差网络模型准确率

用ResNet50模型在原始数据集上训练100次,训练结果如图所示。

在这里插入图片描述

残差网络模型在测试集上的准确率如图所示。

在这里插入图片描述

3)数据增强后残差网络模型准确率

使用数据增强将数据集拓展20倍后,用残差网络模型训练,训练结果如图3所示,准确率如图4所示。

在这里插入图片描述

图3 数据增强后残差网络模型训练结果

在这里插入图片描述

图4 数据增强后残差网络模型准确率

2. 测试效果

如图所示,将测试集数据输入模型进行测试,分类的标签与原始数据进行显示和对比。

在这里插入图片描述

如图所示,可得到验证:模型可以识别四种猫。

在这里插入图片描述

3. 模型应用

页面项目编译成功后,在命令行终端输入:

python manage.py runserver

即可在http://127.0.0.1:8000/预览网页。打开网页,初始界面如图所示。

在这里插入图片描述

界面左侧有两个按钮。单击"选择图片"按钮,即可从本地文件中选取要测试的猫图片。单击"种类识别"按钮,识别出猫的种类,并显示相关信息。在网页上用孟买猫测试结果如图所示。

在这里插入图片描述

其他相关博客

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/250105.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UE4 实用材质图形

渐变圆 光晕效果: 十字光晕:

动态通讯录(并不难都能拿下)

文章目录 🚀前言🚀通讯录实现动态通讯录的初期准备模块化框架搭建 🚀实现接口函数 🚀前言 铁子们好啊!今天咱们来整一个有意思的玩意——通讯录,相信大家对通讯录并不陌生,那接下来就跟着阿辉把…

机械设备企业网站建设的效果如何

机械设备涵盖的类目比较广,其市场需求也是稳增不减,也因此无论大小企业都有增长的机会,当然这也需要靠谱的工具及正确的决策。 对机械设备企业来说,产品品质自然是首位,而向外打造品牌、扩展信息及拓客转化自然也是非…

HarmonyOS NEXT:技术革新与生态挑战的交汇点

背景 在上周(2023年12月11日)我有幸参加了在上海举办的华为鸿蒙生态学堂创新实训营。 参加这个活动的原因是近期关于华为的HarmonyOS NEXT不再兼容Android的消息,也就是说我们的Apk无法在纯血版的HarmonyOS NEXT上运行。 随后就是一些头部的…

opencv中叠加Sobel算子与Laplacian算子实现边缘检测

1 边缘检测介绍 图像边缘检测技术是图像处理和计算机视觉等领域最基本的问题,也是经典的技术难题之一。如何快速、精确地提取图像边缘信息,一直是国内外的研究热点,同时边缘的检测也是图像处理中的一个难题。早期的经典算法包括边缘算子方法…

windows10 php8连接sql server

一、环境安装 文章目录 一、环境安装1.安装php拓展2.在 Windows 上安装PHP驱动程序3.在 Windows 上安装ODBC驱动 二、php连接sqlserver三、注意事项数据库相关设置相关语法sqlsrv_fetch_array 的示例:sqlsrv_fetch 的示例:echo 和 print_r 的不同 所用资…

数据结构 | 查漏补缺之顺式存储和链式存储、如何评价哈希函数的好坏、链地址法、树的遍历、关键路径、完全图、连通图、迪杰斯特拉、b树

目录 顺式存储和链式存储 优缺点比较 顺序存储 ​编辑 链式存储 如何评价哈希函数的好坏 简述哈希查找中链地址法解决冲突的方法 树的遍历 关键路径 完全图 连通图 迪杰斯特拉 b树 特点: 插入(索引不能大于:最大为 M-1 个&#…

TrustGeo代码理解(六)utils.py

代码链接:https://github.com/ICDM-UESTC/TrustGeo 一、导入常用库和模块 from __future__ import print_function from distutils.version import LooseVersion from matplotlib.scale import LogisticTransform import numpy as np import torch import warnings import t…

测序名词解释

测序深度(Sequencing Depth)是指:测序得到的碱基总量(bp)与基因组(转录组或测序目标区域大小)的比值,是评价测序量的指标之一。 测序深度的计算公式为: 测序深度 &…

Java数据结构-通过数组封装-结构分析

1、默认arrayList的数组未初始化&#xff0c;长度为0&#xff0c;容量默认是10 ArrayList<Integer> arrayList new ArrayList<>();System.out.println(ClassLayout.parseInstance(arrayList).toPrintable()); java.util.ArrayList object internals: OFF SZ …

【论文极速读】LVM,视觉大模型的GPT时刻?

【论文极速读】LVM&#xff0c;视觉大模型的GPT时刻&#xff1f; FesianXu 20231210 at Baidu Search Team 前言 这一周&#xff0c;LVM在arxiv上刚挂出不久&#xff0c;就被众多自媒体宣传为『视觉大模型的GPT时刻』&#xff0c;笔者抱着强烈的好奇心&#xff0c;在繁忙工作之…

威联通硬盘休眠后修改系统定时任务

按照网上一些教程&#xff0c;成功将威联通的机械硬盘设置了自动休眠。但是发现每天有多个整点硬盘会自动唤醒&#xff0c;怀疑是系统内置的定时任务触发了硬盘唤醒。 通过查看系统日志中事件和访问记录&#xff0c;判断出一些引发硬盘唤醒的自动任务&#xff0c;将这些定时任…

学习使用echarts漏斗图的参数配置和应用场景

学习使用echarts漏斗图的参数配置和应用场景 前言什么是漏斗图漏斗图的特点及应用场景漏斗图的特点漏斗图常见的的应用场景&#xff1a; echarts中漏斗的常用属性echart漏斗代码美化漏斗图样式1、设置标题字体大小2、设置标签样式3、设置漏斗图为渐变颜色4、设置高亮效果5、设置…

自动化测试(终章)webdriver的常用api(2)以及新的开始

目录 多层框架/窗口定位 多层框架的定位 frame是什么&#xff1f; 多层窗口定位 层级定位 使用 XPath 进行层级定位&#xff1a; 使用 CSS 选择器进行层级定位&#xff1a; 下拉框处理 alert、confirm、prompt 的处理 Alert 弹窗&#xff1a; Confirm 弹窗&#xff…

vue3 elementplus左侧无限级菜单

使用的组件是 element Plus Menu 菜单 注意&#xff1a;Menu 菜单属性参数可以自己配置 链接: Menu 菜单 //父级页面 <el-container><el-aside width"320px"><el-menuopen"handleOpen"close"handleClose":default-active"…

openmediavault debian linux安装配置企业私有网盘(三 )——raid5与btrfs文件系统无损原数据扩容

一、适用环境 1、企业自有物理专业服务器&#xff0c;一些敏感数据不外流时&#xff0c;使用openmediavault自建NAS系统&#xff1b; 2、在虚拟化环境中自建NAS系统&#xff0c;用于内网办公&#xff0c;或出差外网办公时&#xff0c;企业内的文件共享&#xff1b; 3、虚拟化环…

jmeter,http cookie管理器

Http Cookie管理器自动实现Cookie关联的原理&#xff1a; (默认:作用域在同级别的组件) 一:当Jmeter第1次请求服务器的时候,如果说服务器有通过响应头的Set-Cookie有返回Cookie,那么Http Cookie管理器就会自动的保存这些Cookie的值。 二&#xff1a;当Jmeter第2-N次请求服务器的…

PyQt6 QSpacerItem弹簧控件

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计46条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

【报错栏】(vue)Module not found: Error: Can‘t resolve ‘element-ui‘ in xxx

Module not found: Error: Cant resolve element-ui in xxx 报错原因是&#xff1a; 未安装 element-ui 依赖 解决&#xff1a; npm install element-ui 运行

生物信息学分析领域领先的特制语言环境NGLess(Next Generation Less)介绍、安装配置和详细使用方法

介绍 NGLess&#xff08;Next Generation Less&#xff09;是一种用于生物信息学分析的领先的领域特定语言&#xff08;DSL&#xff09;。它旨在简化和加速NGS&#xff08;Next Generation Sequencing&#xff09;数据的分析过程。NGLess具有清晰的语法和功能&#xff0c;使用户…