Amortized Bootstrapping of LWE:使用 BFV 打包处理

参考文献:

  1. [AP13] Alperin-Sheriff J, Peikert C. Practical bootstrapping in quasilinear time[C]//Annual Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1-20.
  2. [MS18] Micciancio D, Sorrell J. Ring packing and amortized FHEW bootstrapping[J]. Cryptology ePrint Archive, 2018.
  3. [CHKKS19] Cheon J H, Han K, Kim A, et al. A full RNS variant of approximate homomorphic encryption[C]//Selected Areas in Cryptography–SAC 2018: 25th International Conference, Calgary, AB, Canada, August 15–17, 2018, Revised Selected Papers 25. Springer International Publishing, 2019: 347-368.
  4. [CDKS21] Chen H, Dai W, Kim M, et al. Efficient homomorphic conversion between (ring) LWE ciphertexts[C]//International Conference on Applied Cryptography and Network Security. Cham: Springer International Publishing, 2021: 460-479.
  5. [INZ21] Iliashenko I, Negre C, Zucca V. Integer functions suitable for homomorphic encryption over finite fields[C]//Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography. 2021: 1-10.
  6. [LW23] Liu Z, Wang Y. Amortized Functional Bootstrapping in less than 7ms, with $\tilde {O}(1) $ polynomial multiplications[J]. Cryptology ePrint Archive, 2023.
  7. Amortized FHEW bootstrapping
  8. Chimera:混合的 RLWE-FHE 方案
  9. Pegasus:CKKS 和 TFHE 的混合

文章目录

  • Interpolation over finite fields
    • Lemma
    • Unary functions
  • Batched LWE ciphertext bootstrapping
    • NAND Gate
    • Optimizations
    • Other Binary Gates
    • Arbitrary Functions
    • Scheme Switching
  • Evaluation

Interpolation over finite fields

对于 p p p 次插值多项式,使用通用的 Paterson-Stockmeyer 多项式求值算法,复杂度为 2 p + O ( log ⁡ p ) \sqrt{2p}+O(\log p) 2p +O(logp)

[INZ21] 利用素域的性质,给出了某些特殊函数的更高效的插值多项式:取模、判断幂次、汉明重量、模二、比较。

Lemma

奇素数 p ≥ 3 p\ge3 p3,素域 Z p \mathbb Z_p Zp

  • 对于任意的 e ∈ [ 0 , p − 2 ] e \in [0,p-2] e[0,p2],都有
    ∑ a ∈ G F ( p ) a e = 0 ( m o d p ) \sum_{a \in GF(p)} a^e = 0 \pmod p aGF(p)ae=0(modp)

  • 对于任意的 a , b ∈ Z p a,b \in \mathbb Z_p a,bZp,都有
    ( a − b ) p − 1 = ∑ i = 0 p − 1 a i b p − 1 − i ( m o d p ) (a-b)^{p-1} = \sum_{i=0}^{p-1} a^ib^{p-1-i} \pmod p (ab)p1=i=0p1aibp1i(modp)

  • 根据 Fermat Little Theorem,等性检测的二元多项式:
    E Q ( x , y ) = 1 − ( x − y ) p − 1 EQ(x,y) = 1-(x-y)^{p-1} EQ(x,y)=1(xy)p1

  • 任意的函数 f : Z p n → Z p f: \mathbb Z_p^n \to \mathbb Z_p f:ZpnZp 都可以唯一表示为多元多项式 P f ( X 1 , ⋯   , X n ) P_f(X_1,\cdots,X_n) Pf(X1,,Xn),各个变元的次数不超过 p − 1 p-1 p1,具体的插值多项式为
    P f ( X 1 , ⋯   , X n ) = ∑ a ⃗ ∈ Z p n f ( a ⃗ ) ∏ i = 1 n ( 1 − ( X i − a i ) p − 1 ) P_f(X_1,\cdots,X_n) = \sum_{\vec a \in \mathbb Z_p^n} f(\vec a) \prod_{i=1}^n (1-(X_i-a_i)^{p-1}) Pf(X1,,Xn)=a Zpnf(a )i=1n(1(Xiai)p1)

Unary functions

设置 n = 1 n=1 n=1,那么任意的 f : Z p → Z p f: \mathbb Z_p \to \mathbb Z_p f:ZpZp 可以插值为:
P f ( X ) = ∑ i = 0 p − 1 f ( a ) ⋅ ( 1 − ( X − a ) p − 1 ) = f ( 0 ) − ∑ i = 1 p − 1 ( ∑ a = 0 p − 1 f ( a ) a p − 1 − i ) ⋅ X i \begin{aligned} P_f(X) &= \sum_{i=0}^{p-1} f(a) \cdot (1-(X-a)^{p-1})\\ &= f(0) - \sum_{i=1}^{p-1} \left( \sum_{a=0}^{p-1} f(a)a^{p-1-i} \right) \cdot X^i \end{aligned} Pf(X)=i=0p1f(a)(1(Xa)p1)=f(0)i=1p1(a=0p1f(a)ap1i)Xi
我们希望 P f ( X ) P_f(X) Pf(X) 越稀疏越好。[INZ21] 观察到,假设 ζ k \zeta_k ζk 是本原单位根,满足 k ∣ p − 1 k \mid p-1 kp1,将 Z p ∗ \mathbb Z_p^* Zp 分为 k k k 个子集 { S 0 , ⋯   , S k − 1 } \{S_0,\cdots,S_{k-1}\} {S0,,Sk1} 的不交并,
S j = ζ k j S 0 ,    ∀ 0 ≤ j < k S_j = \zeta_k^j S_0,\,\, \forall 0\le j < k Sj=ζkjS0,∀0j<k
那么,

  • 对于那些 k ∣ i k \mid i ki 的系数索引,
    ∑ a ∈ S 0 a p − 1 − i = 0 \sum_{a \in S_0} a^{p-1-i} = 0 aS0ap1i=0

  • 假如 f f f 在每个 S j S_j Sj 上都是常数,
    f ( a ) = c j ,    ∀ a ∈ S j f(a) = c_j,\,\, \forall a \in S_j f(a)=cj,aSj
    那么 P f ( X ) P_f(X) Pf(X) 的所有 X i , k ∣ i X^i,k \mid i Xi,ki 的系数都为零

Batched LWE ciphertext bootstrapping

[MS18] 最先给出了 FHEW 的批处理自举,均摊成本 O ( 3 ϵ ⋅ n 1 / ϵ ) , ∀ ϵ > 0 O(3^\epsilon \cdot n^{1/\epsilon}), \forall \epsilon>0 O(3ϵn1/ϵ),ϵ>0,然而结构复杂,没有给出具体实现。之后有若干工作,也给出了批处理的 LWE 自举算法。

[LW23] 直接使用 BFV 的 SIMD 性质(并非 ACC + LUT)来批量自举 LWE 密文。简单来说:

  1. 输入若干 LWE 密文,堆叠为矩阵形式 ( A , b ) (A,b) (A,b)
  2. 采取 Pegasus 的同态线性变换,在 BFV 的明文槽中解密出 μ ⃗ = b − A s \vec \mu=b-As μ =bAs
  3. 将函数 f f f 插值为多项式,同态计算出 f ( μ ⃗ ) {f(\vec\mu)} f(μ ),这是 Slot-Packing 打包的
  4. 采取 Slot-to-Coeff 技术同态解码,此时 BFV 加密 f ( μ ⃗ ) f(\vec\mu) f(μ ) 的 Coeff-Packing
  5. 使用 Extract 提取出 LWE 密文

最终,均摊成本是 O ~ ( 1 ) \tilde O(1) O~(1) 多项式乘法。他们选取的参数下,均摊运行时间小于 7 7 7 毫秒。

LWE 方案(MSD 编码)

  • 维度 n n n:要求整除 N N N
  • 密文模数 q q q
  • 明文模数 p p p
  • 私钥 s k sk sk:自重复打包在 BFV 密文中,简记 b f v c t s k = B F V s ( E c d ( s k ∥ ⋯ ∥ s k , Δ ) ) bfvct_{sk}=BFV_{s}(Ecd(sk\|\cdots\|sk,\Delta)) bfvctsk=BFVs(Ecd(sksk,Δ))

BFV 方案(MSD 编码)

  • 维度 N N N:二的幂次
  • 密文模数 Q Q Q:满足 RNS 系统
  • 明文模数 t t t:设置为 t = q t=q t=q,自动取模
  • 私钥 s k B F V = s ( x ) sk_{BFV}=s(x) skBFV=s(x)
  • 公钥 p k pk pk,重线性化密钥 e v k evk evk(同态乘法),旋转密钥 r t k rtk rtk(同态旋转)
  • 秘钥切换密钥 K s → s k K_{s \to sk} Kssk:运算完成之后从 BFV 切换回 LWE

在算法中,使用了 Pegaus 的同态线性变换:

在这里插入图片描述

NAND Gate

回顾下 FHEW 怎么计算 NAND Gate,

  1. Z 2 \mathbb Z_2 Z2 提升到 Z 4 \mathbb Z_4 Z4,算术加法 μ ′ = μ 1 + μ 2 ( m o d 4 ) \mu' = \mu_1+\mu_2 \pmod 4 μ=μ1+μ2(mod4)
  2. 使用 LUT,如果 μ ′ = 2 \mu'=2 μ=2 查表出 μ ← 1 ∈ Z 2 \mu \gets 1 \in \mathbb Z_2 μ1Z2(存放在 Z 4 \mathbb Z_4 Z4 中),否则查表出 μ ← 0 \mu \gets 0 μ0

当然,这个 LUT 的 domain 和 range 都应当缩放为它们在 Z q \mathbb Z_q Zq 上的编码值,并且旋转一定的角度使得它成为 Negacyclic 函数。

[LW23] 采用了 p = 3 p=3 p=3(而不是 p = 4 p=4 p=4),那么
b i − ⟨ a i , s k ⟩ = ⌊ q / 3 ⌉ ⋅ μ i + e i b_i - \langle a_i,sk \rangle = \lfloor q/3\rceil \cdot \mu_i + e_i biai,sk=q/3μi+ei
我们要求 ∣ e i ∣ < ⌊ q / 12 ⌋ |e_i| < \lfloor q/12 \rfloor ei<q/12,从而 ∣ e 1 + e 2 ∣ < ⌊ q / 6 ⌋ |e_1+e_2| < \lfloor q/6 \rfloor e1+e2<q/6 解密正确。方便起见,[LW23] 将 c i = ( a i , b i ) c_i=(a_i,b_i) ci=(ai,bi) 的相位旋转 q / 6 q/6 q/6 使得噪声是非负数,得到 c i ′ = ( a i , b i + ⌊ q / 6 ⌋ ) c_i'=(a_i,b_i+\lfloor q/6 \rfloor) ci=(ai,bi+q/6⌋)

那么,给定 c = c 1 + c 2 c=c_1+c_2 c=c1+c2
b − ⟨ a , s k ⟩ ∈ { 0 + e 1 + e 2 ∈ [ 0 , ⌊ q / 3 ⌋ ) , μ 1 = μ 2 = 0 ⌊ q / 3 ⌋ + e 1 + e 2 ∈ [ ⌊ q / 3 ⌋ , 2 ⌊ q / 3 ⌋ ) , o t h e r w i s e 2 ⌊ q / 3 ⌋ + e 1 + e 2 ∈ [ 2 ⌊ q / 3 ⌋ , q ) μ 1 = μ 2 = 1 b - \langle a,sk \rangle \in \left\{\begin{aligned} 0+e_1+e_2 &\in [0, \lfloor q/3\rfloor),&& \mu_1=\mu_2=0\\ \lfloor q/3\rfloor+e_1+e_2 &\in [\lfloor q/3\rfloor, 2\lfloor q/3\rfloor),&& otherwise\\ 2\lfloor q/3\rfloor+e_1+e_2 &\in [2\lfloor q/3\rfloor, q)&& \mu_1=\mu_2=1\\ \end{aligned}\right. ba,sk 0+e1+e2q/3+e1+e22q/3+e1+e2[0,q/3⌋),[⌊q/3,2q/3⌋),[2q/3,q)μ1=μ2=0otherwiseμ1=μ2=1
因此,我们定义 NAND Gate 对应的 LUT:
f ( x ) = { 0 , x ∈ [ 2 ⌊ q / 3 ⌋ , q ) ⌊ q / 3 ⌋ , o t h e r w i s e f(x) = \left\{\begin{aligned} 0,&& x \in [2\lfloor q/3\rfloor, q)\\ \lfloor q/3\rfloor,&& otherwise \end{aligned}\right. f(x)={0,q/3,x[2q/3,q)otherwise
[LW21] 将它称为 DRaMDivision, Rounding, and Mapping)。我们将它在素域 Z q \mathbb Z_q Zq 上插值为多项式:
P f ( x ) = f ( 0 ) − ∑ i = 1 q − 1 ( ∑ a = 0 q − 1 f ( a ) a q − 1 − i ) ⋅ X i P_f(x) = f(0) - \sum_{i=1}^{q-1} \left( \sum_{a=0}^{q-1} f(a)a^{q-1-i} \right) \cdot X^i Pf(x)=f(0)i=1q1(a=0q1f(a)aq1i)Xi
注意,BFV 可以计算任意的多项式,并没有 Negacyclic 的约束

现在的计算任务就是:
c ∈ Z q n + 1 ↦ P f ( [ b − ⟨ a , s k ⟩ ] q ) ∈ Z q c \in \mathbb Z_q^{n+1} \mapsto P_f\big([b-\langle a,sk\rangle]_q\big) \in \mathbb Z_q cZqn+1Pf([ba,sk]q)Zq
内积运算采取 Pegasus 的同态下线性变换,多项式求值运算采取 Paterson-Stockmeyer 算法。这些运算都是在 BFV Slots 上执行的,最后需要使用 [CHKKS18] 的同态解码算法(可以直接使用 Pegasus 的同态下线性变换,但存在更快的 FFT-style 算法 [HHC19])。

我们设置 BFV 明文空间 t = q t=q t=q 使得它自动模掉 LWE 的密文模数,批处理 N N N 个 LWE 密文(占满 BFV Slots),LWE 的私钥 s k ∈ Z q n sk \in \mathbb Z_q^n skZqn 被重复打包 N / n N/n N/n 次。具体算法如下:

在这里插入图片描述

Optimizations

  1. 如果某函数形如:
    f ( x ) = { 0 , ∀ x ∈ ( − r , r ) c , o t h e r w i s e f(x) = \left\{\begin{aligned} 0,&& \forall x \in (-r,r)\\ c,&& otherwise \end{aligned}\right. f(x)={0,c,x(r,r)otherwise
    其中 r ∈ [ 2 , ⌊ q / 2 ⌋ ] , c ∈ Z q r \in [2,\lfloor q/2\rfloor], c \in \mathbb Z_q r[2,q/2⌋],cZq 都是常数,那么它对应的 P f P_f Pf 的系数有大约一半是零。因此,我们扭曲 NAND LUT 相位 + ⌊ q / 6 ⌋ +\lfloor q/6 \rfloor +q/6,对应的扭曲 LWE 密文为 ( a , b − 2 ⌊ q / 3 ⌋ − ⌊ q / 6 ⌋ ) (a, b-2\lfloor q/3 \rfloor-\lfloor q/6 \rfloor) (a,b2q/3q/6⌋)

  2. 在 Pegaus 的同态线性变换中,采取了 BSGS 技巧,需要使用 b f v c t s k bfvct_{sk} bfvctsk 分别旋转 i ⋅ n , ∀ i ∈ [ n ] i \cdot \sqrt n, \forall i \in [\sqrt n] in ,i[n ] 个位置,这个可以被 KeyGen 时预计算(空间换时间)

  3. 计算 DRaM 花费了较深的电路,我们直降将 b f v c t 3 bfvct_3 bfvct3 模切换到更低的模数 Q ′ ≪ Q Q' \ll Q QQ 上,然后再执行后续的 S2C(需要额外计算 Q ′ Q' Q 下的旋转密钥 r t k ′ rtk' rtk

  4. 不再各个 LWE 密文分别 Key-Switch,我们可以在 b f v c t 5 bfvct_5 bfvct5 上执行 RLWE-KS,目标 s → s ′ s \to s' ss 是关于 s k sk sk 的(使得 Extract 恰好是 s k sk sk 加密的)

Other Binary Gates

一个重要的观察是 BFV 是以 SIMD 范式执行的,因此全部的槽都执行同一个 DRaM 多项式:它将 x ∈ [ 2 ⌊ q / 3 ⌋ , q ) x \in [2\lfloor q/3\rfloor, q) x[2q/3,q) 映射到 0 0 0,其余的都映射到 ⌊ q / 3 ⌋ \lfloor q/3\rfloor q/3

虽然 NAND 是完备的,但是只用 NAND 搭建电路,其规模会较大。为了使得不同的槽可以执行任意的 Binary Gates,[LW23] 的思路是 “预处理+后处理”,使得全部的 Gates 都共用这个 DRaM 函数。

算法如下:

在这里插入图片描述

这个预处理和后处理的速度都是非常快的(仅仅是 b ∈ Z q b \in \mathbb Z_q bZq 上的加减法),其开销可以忽略。

Arbitrary Functions

对于更高精度的函数 f : Z p → Z q f: \mathbb Z_p \to \mathbb Z_q f:ZpZq,其中的 p ≥ 3 p \ge 3 p3 是任意素数,依旧可以采用上述的算法。唯一的修改就是我们在线构造 P f P_f Pf 多项式,并要求 LWE 密文噪声满足 ∣ e ∣ ≤ ⌊ q / 2 p ⌋ |e| \le \lfloor q/2p \rfloor eq/2p 从而解密正确。

算法如下:

在这里插入图片描述

Scheme Switching

易知:

  • LWE 是 MSD 编码的,采用 [AP13] 的技术可以实现 BFV to/from BGV 的方案切换
  • Pegasus 的同态线性变换就是 FHEW/TFHE to BFV/BGV 的方案切换
  • [CHKKS18] 的 S2C 就是 BFV/BGV to FHEW/TFHE 的方案切换

Evaluation

参数:

在这里插入图片描述

效率:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/250073.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flask维护者:李辉

Flask维护者&#xff1a;李辉&#xff0c; 最近看b站的flask相关&#xff0c;发现了这个视频&#xff1a;[PyCon China 2023] 濒危 Flask 扩展拯救计划 - 李辉_哔哩哔哩_bilibili 李辉讲他在维护flask之余&#xff0c;开发了apiflask这个依托flask的框架。GitHub - apiflask/a…

02markdown-学习笔记

一级标题 二级标题 三级标题 四级标题 五级标题 六级标题 换行符<br>标签 写入一段测试用的正文第二段测试文本,如果要对文本进行换行可以使用<br>标签 文本修饰符 字体为斜体的修饰&#xff0c;一对星号包含 字符为粗体&#xff0c;两对星号包含 字体为…

ISP-EE(Edge Enhance)

ISP-EE(Edge Enhance) EE模块在某些ISP主控中叫做sharpness或者sharpen&#xff0c;这些名称指代的模块是同一个&#xff0c;不用再纠结。主要就是在YUV域内弥补成像过程中图像的锐度损失&#xff0c;对边缘和细节进行加强&#xff0c;从而恢复场景本应具有的自然锐度。 锐度…

三层交换与DHCP

目录 一、三层交换 &#xff08;一&#xff09;基本概念 &#xff08;二&#xff09;转发原理 &#xff08;三&#xff09;ensp项目实验 二、DHCP &#xff08;一&#xff09;DHCP工作原理 1.DHCP的特点 2.工作原理 &#xff08;二&#xff09;DHCP项目实验 一、三层交…

Node.js黑马时钟案例

先上没有使用node.js之前的html部分代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title></title><style>* {margin: 0;padding: 0;}html,body {height: 100%;overflow: hidden;backgrou…

猿人学简单题分析(js逆向)

猿人学15T&#xff0c;实际带着大家分析一下。 开发者工具进行抓包&#xff0c;然后找的参数类型 由于这里的加密参数是m搜索出来的肯定是很多的&#xff0c;所以直接上XHR断点进行快速定位。 直接调用堆栈开始向上找。 控制台输出这个window.m查看这个函数的位置。 找到直接扣…

git安装和配置

git安装和配置 一、软件介绍 Git是一个免费开源的分布式版本控制系统&#xff0c;旨在快速高效地处理从小型到大型项目的所有内容。 Git易于学习&#xff0c;占地面积小&#xff0c;性能闪电般快。它以廉价的本地分支、方便的暂存区域和多个工作流等功能胜过了Subversion、C…

golang反射(reflect)虽爽,但很贵

标准库 reflect 为 Go 语言提供了运行时动态获取对象的类型和值以及动态创建对象的能力。反射可以帮助抽象和简化代码&#xff0c;提高开发效率。 但是使用反射势必会多出大量的操作指令&#xff0c;导致性能下降 案例 字段赋值方式对比 type Student struct {Name string…

1.electron之纯原生js/jquery的桌面应用程序(基础篇)

如果可以实现记得点赞分享&#xff0c;谢谢老铁&#xff5e; Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 Electron 将 Chromium 和 Node.js 嵌入到了一个二进制文件中&#xff0c;因此它允许你仅需一个代码仓库&#xff0c;就可以撰写支持 Windows、…

灾备建设中,虚拟机异构平台恢复技术原理与应用

在如今混合云环境下&#xff0c;实现异构虚拟化恢复与迁移面临着极大挑战。不同于市面上有代理的恢复方案&#xff0c;虚拟机无代理跨平台恢复解决方案利用自主研发的转换引擎&#xff08;VMCE&#xff09;对已备份虚拟机文件进行高效的存储格式转换和配置信息转换&#xff0c;…

基于java 的经济开发区管理系统设计与实现(源码+调试)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。今天给大家介绍一篇基于java 的经济开发区管…

基于Springboot的教学信息反馈系统的设计与实现(源码+调试)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。今天给大家介绍一篇基于Springboot的教学信…

如何进行Feign的自定义配置

Feign可以支持很多的自定义配置&#xff0c;下列是部分配置信息 类型作用说明Logger.Level修改日志级别配置键&#xff1a;loggerLevel&#xff0c;包含四种不同的级别&#xff1a;NONE、BASIC、HEADERS、FULLClass<Retryer>失败重试机制配置键&#xff1a;retryer&#…

dcoker-compose一键部署EFAK —— 筑梦之路

简介 EFAK&#xff08;Eagle For Apache Kafka&#xff0c;以前称为 Kafka Eagle&#xff09;是一款由国内公司开源的Kafka集群监控系统&#xff0c;可以用来监视kafka集群的broker状态、Topic信息、IO、内存、consumer线程、偏移量等信息&#xff0c;并进行可视化图表展示。独…

stm32H库的内部FLASH读写操作与结构体数组数据写入与读取

stm32H库的内部FLASH读写操作与结构体数组数据写入与读取 1.软硬件准备2.关于STM32的Flash的一些说明3.实验结果 参考博主-STM32系列(HAL库)——内部FLASH读写实验 1.软硬件准备 软件&#xff1a;CubeMX、SSCOM&#xff08;串口调试助手&#xff09; 硬件&#xff1a;SMT32F…

如何查看KylinOS银河麒麟操作系统版本?

如何查看KylinOS银河麒麟操作系统版本? 当前银河银河麒麟高级服务器操作系统V10发行版如下&#xff1a; (Tercel) 版本是 银河麒麟 V10 SP1 版本(Sword) 版本是 银河麒麟 V10 SP2 版本(Lance) 版本是 银河麒麟 V10 SP3 版本我们可使用如下三种方式&#xff08;命令&#xff0…

【C++11特性篇】利用 { } 初始化(1)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.回顾C98标准中{}的使用二.一切皆可用…

前端路由钩子的神奇之处:你真的了解它们吗?(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

QT实现四则运算计算器

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setMaximumSize(240,300);this->setMinimumSize(240,300);this->setWindowTitle("计算器&…

大模型算法工程师的面试题来了(附答案)

自 ChatGPT 在去年 11 月底横空出世&#xff0c;大模型的风刮了整一年。 历经了百模大战、Llama 2 开源、GPTs 发布等一系列里程碑事件&#xff0c;将大模型技术推至无可争议的 C 位。基于大模型的研究与讨论&#xff0c;也让我们愈发接近这波技术浪潮的核心。 最近大模型相关…