深度学习 Day14——P3天气识别

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

文章目录

  • 前言
  • 1 我的环境
  • 2 代码实现与执行结果
    • 2.1 前期准备
      • 2.1.1 引入库
      • 2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)
      • 2.1.3 导入数据
      • 2.1.4 可视化数据
      • 2.1.4 图像数据变换
      • 2.1.4 划分数据集
      • 2.1.4 加载数据
      • 2.1.4 查看数据
    • 2.2 构建CNN网络模型
    • 2.3 训练模型
      • 2.3.1 训练模型
      • 2.3.2 编写训练函数
      • 2.3.3 编写测试函数
      • 2.3.4 正式训练
    • 2.4 结果可视化
  • 3 知识点详解
    • 3.1 torchvision.transforms.Compose()详解
    • 3.2 pathlib中glob匹配多个格式文件获取数据列表
    • 3.3 plt.tight_layout()作用
    • 3.4 x.view()函数
    • 3.5 The freeze_support error解决方案
    • 3.6 提升测试acc--改变优化器
  • 总结


前言

本文将采用pytorch框架创建CNN网络,实现天气识别。讲述实现代码与执行结果,并浅谈涉及知识点。
关键字: torchvision.transforms.Compose()详解,pathlib中glob匹配多个格式文件获取数据列表,plt.tight_layout()作用,x.view()函数,The freeze_support error解决方案,提升测试acc–改变优化器。

1 我的环境

  • 电脑系统:Windows 11
  • 语言环境:python 3.8.6
  • 编译器:pycharm2020.2.3
  • 深度学习环境:
    torch == 1.9.1+cu111
    torchvision == 0.10.1+cu111
  • 显卡:NVIDIA GeForce RTX 4070

2 代码实现与执行结果

2.1 前期准备

2.1.1 引入库

import torch
import torch.nn as nn

from torchvision import transforms, datasets
import os
from pathlib import Path
from PIL import Image
from torchinfo import summary
import torch.nn.functional as F
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
import warnings

warnings.filterwarnings('ignore')  # 忽略一些warning内容,无需打印

2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)

"""前期准备-设置GPU"""
# 如果设备上支持GPU就使用GPU,否则使用CPU
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 print("Using {} device".format(device))

输出

Using cuda device

2.1.3 导入数据

'''前期工作-导入数据'''
data_dir = "D:/DeepLearning/data/weather_photos/"
data_dir = Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[-1] for path in data_paths]
print(classeNames)

输出

['cloudy', 'rain', 'shine', 'sunrise']

2.1.4 可视化数据

'''前期工作-可视化数据'''
# 指定图像文件夹路径
image_folder = os.path.join(data_dir, 'cloudy/')
# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))
# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
# 显示图像
plt.tight_layout()
plt.show()

在这里插入图片描述

2.1.4 图像数据变换

'''前期工作-图像数据变换'''
total_datadir = data_dir

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
print(total_data)

输出

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: D:\DeepLearning\data\weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

2.1.4 划分数据集

'''前期工作-划分数据集'''
train_size = int(0.8 * len(total_data))  # train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
test_size = len(total_data) - train_size  # test_size表示测试集大小,是总体数据长度减去训练集大小。
# 使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,
# 并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

输出

<torch.utils.data.dataset.Subset object at 0x000001A0144E8D00> <torch.utils.data.dataset.Subset object at 0x000001A0144E8DC0>

2.1.4 加载数据

'''前期工作-加载数据'''
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

2.1.4 查看数据

'''前期工作-查看数据'''
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

2.2 构建CNN网络模型

在这里插入图片描述

"""构建CNN网络"""
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(-1, 24 * 50 * 50)
        x = self.fc1(x)

        return x
        
model = Network_bn().to(device)
print(model)
summary(model)        

输出

Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Network_bn                               --
├─Conv2d: 1-1                            912
├─BatchNorm2d: 1-2                       24
├─Conv2d: 1-3                            3,612
├─BatchNorm2d: 1-4                       24
├─MaxPool2d: 1-5                         --
├─Conv2d: 1-6                            7,224
├─BatchNorm2d: 1-7                       48
├─Conv2d: 1-8                            14,424
├─BatchNorm2d: 1-9                       48
├─Linear: 1-10                           240,004
=================================================================
Total params: 266,320
Trainable params: 266,320
Non-trainable params: 0
=================================================================

2.3 训练模型

2.3.1 训练模型

"""训练模型--设置超参数"""
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数,计算实际输出和真实相差多少,交叉熵损失函数,事实上,它就是做图片分类任务时常用的损失函数
learn_rate = 1e-4  # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)  # 作用是定义优化器,用来训练时候优化模型参数;其中,SGD表示随机梯度下降,用于控制实际输出y与真实y之间的相差有多大

2.3.2 编写训练函数

"""训练模型--编写训练函数"""
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 加载数据加载器,得到里面的 X(图片数据)和 y(真实标签)
        X, y = X.to(device), y.to(device) # 用于将数据存到显卡

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # 清空过往梯度
        loss.backward()  # 反向传播,计算当前梯度
        optimizer.step()  # 根据梯度更新网络参数

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.3.3 编写测试函数

"""训练模型--编写测试函数"""
# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad(): # 测试时模型参数不用更新,所以 no_grad,整个模型参数正向推就ok,不反向更新参数
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()#统计预测正确的个数

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

2.3.4 正式训练

"""训练模型--正式训练"""
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

输出

Epoch: 1, Train_acc:55.8%, Train_loss:1.098, Test_acc:58.7%,Test_loss:1.073
Epoch: 2, Train_acc:79.8%, Train_loss:0.682, Test_acc:74.2%,Test_loss:1.073
Epoch: 3, Train_acc:83.7%, Train_loss:0.536, Test_acc:78.2%,Test_loss:0.552
Epoch: 4, Train_acc:85.3%, Train_loss:0.472, Test_acc:80.9%,Test_loss:0.466
Epoch: 5, Train_acc:88.4%, Train_loss:0.412, Test_acc:82.7%,Test_loss:0.477
Epoch: 6, Train_acc:88.8%, Train_loss:0.367, Test_acc:88.0%,Test_loss:0.418
Epoch: 7, Train_acc:90.7%, Train_loss:0.318, Test_acc:88.4%,Test_loss:0.411
Epoch: 8, Train_acc:91.4%, Train_loss:0.288, Test_acc:86.2%,Test_loss:0.371
Epoch: 9, Train_acc:91.8%, Train_loss:0.289, Test_acc:86.7%,Test_loss:0.377
Epoch:10, Train_acc:91.4%, Train_loss:0.282, Test_acc:89.3%,Test_loss:0.342
Epoch:11, Train_acc:93.1%, Train_loss:0.248, Test_acc:89.3%,Test_loss:0.332
Epoch:12, Train_acc:93.6%, Train_loss:0.230, Test_acc:87.6%,Test_loss:0.344
Epoch:13, Train_acc:94.8%, Train_loss:0.216, Test_acc:88.9%,Test_loss:0.381
Epoch:14, Train_acc:94.2%, Train_loss:0.206, Test_acc:87.6%,Test_loss:0.340
Epoch:15, Train_acc:94.8%, Train_loss:0.199, Test_acc:88.4%,Test_loss:0.316
Epoch:16, Train_acc:94.7%, Train_loss:0.205, Test_acc:88.4%,Test_loss:0.475
Epoch:17, Train_acc:95.7%, Train_loss:0.222, Test_acc:86.7%,Test_loss:0.340
Epoch:18, Train_acc:96.1%, Train_loss:0.200, Test_acc:88.0%,Test_loss:0.319
Epoch:19, Train_acc:95.4%, Train_loss:0.182, Test_acc:88.4%,Test_loss:0.337
Epoch:20, Train_acc:96.8%, Train_loss:0.192, Test_acc:89.3%,Test_loss:0.304
Done

2.4 结果可视化

"""训练模型--结果可视化"""
epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

3 知识点详解

3.1 torchvision.transforms.Compose()详解

torchvision是pytorch的一个图形库,它服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision.transforms主要是用于常见的一些图形变换。以下是torchvision的构成:

1.torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
2.torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
3.torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
4.torchvision.utils: 其他的一些有用的方法。

torchvision.transforms.Compose()类的主要作用是串联多个图片变换的操作。

from torchvision.transforms import transforms

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),                  # 将输入图片resize成统一尺寸
    transforms.RandomRotation(degrees=(-10, 10)),   # 随机旋转,-10到10度之间随机选
    transforms.RandomHorizontalFlip(p=0.5),         # 随机水平翻转 选择一个概率概率
    transforms.RandomVerticalFlip(p=0.5),           # 随机垂直翻转
    transforms.RandomPerspective(distortion_scale=0.6, p=1.0),    # 随机视角
    transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)),  # 随机选择的高斯模糊模糊图像
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std = [0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

参考链接:torchvision.transforms.Compose()详解【Pytorch入门手册】

3.2 pathlib中glob匹配多个格式文件获取数据列表

可视化数据可用另一种方式显示

'''数据预处理-可视化数据'''
    cloudyPath = Path(data_dir)/"cloudy"
    image_files = list(p.resolve() for p in cloudyPath.glob('*') if p.suffix in [".jpg", ".png", ".jpeg"])

    plt.figure(figsize=(16, 6))
    for i in range(len(image_files[:24])):
        image_file = image_files[i]
        ax = plt.subplot(3, 8, i + 1)
        img = Image.open(str(image_file))
        plt.imshow(img)
        plt.axis("off")
    # 显示图片
    plt.tight_layout()
    plt.show()

3.3 plt.tight_layout()作用

tight_layout会自动调整子图参数,使之填充整个图像区域。这是个实验特性,可能在一些情况下不工作。它仅仅检查坐标轴标签、刻度标签以及标题的部分。

当你拥有多个子图时,你会经常看到不同轴域的标签叠在一起。

plt.rcParams['savefig.facecolor'] = "0.8"

def example_plot(ax, fontsize=12):
     ax.plot([1, 2])
     ax.locator_params(nbins=3)
     ax.set_xlabel('x-label', fontsize=fontsize)
     ax.set_ylabel('y-label', fontsize=fontsize)
     ax.set_title('Title', fontsize=fontsize)

plt.close('all')
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

产生图片:
在这里插入图片描述
增加plt.tight_layout()会调整子图之间的间隔来减少堆叠。
在这里插入图片描述
参考链接:plt.tight_layout()

3.4 x.view()函数

在构建神经网络的时候,经常会用到x.view()函数,实际上view()类似于reshape()的用法,将张量重新规划格式,本文将简单介绍这个函数的用法。

import torch

a = torch.arange(1,17)
print(a.shape)
print(a)
a = a.view(-1,4)
print(a.shape)
print(a)

输出

torch.Size([16])
tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16])
torch.Size([4, 4])
tensor([[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12],
        [13, 14, 15, 16]])

这里view的第一个参数有时会是-1,-1代表不确定,行数将由张量的长度除以列数决定,也就是说
a.view(-1,4) == a.view(4,4)
a.view(-1,8) == a.view(2,8)

参考链接:x.view(-1,4)

3.5 The freeze_support error解决方案

RuntimeError:
       An attempt has been made to start a new process before the
       current process has finished its bootstrapping phase.

   This probably means that you are not using fork to start your
   child processes and you have forgotten to use the proper idiom
   in the main module:

       if __name__ == '__main__':
           freeze_support()
           ...

   The "freeze_support()" line can be omitted if the program
   is not going to be frozen to produce an executable.

这个错误相信很多人都碰到过,就是,在Linux中可以很好运行的代码,在Windows中会给出这样的错误。
究其原因,往往出现在multiprocess上。当程序中调用 multiprocess函数,却不是在main中时,会出现这样的报错。

解决方案:
写一个main函数,然后在if name == ‘main’:中运行这个main函数。把那些引用multiprocessing的函数作都放到main()函数里去执行就OK了。
参考链接:Windows freeze_support Error: An attempt has been made to start a new process

3.6 提升测试acc–改变优化器

原文优化器设置为SDG

opt = torch.optim.Adam(model.parameters(), lr=learn_rate) 

变更优化器为Adam后,代码如下

opt = torch.optim.Adam(model.parameters(), lr=learn_rate) 

变更后,测试精度提升

Epoch: 2, Train_acc:84.2%, Train_loss:0.435, Test_acc:90.2%,Test_loss:0.257
Epoch: 3, Train_acc:89.1%, Train_loss:0.323, Test_acc:84.9%,Test_loss:0.481
Epoch: 4, Train_acc:89.3%, Train_loss:0.346, Test_acc:91.6%,Test_loss:0.218
Epoch: 5, Train_acc:91.3%, Train_loss:0.272, Test_acc:92.9%,Test_loss:0.271
Epoch: 6, Train_acc:96.9%, Train_loss:0.183, Test_acc:94.7%,Test_loss:0.184
Epoch: 7, Train_acc:93.8%, Train_loss:0.261, Test_acc:92.0%,Test_loss:0.312
Epoch: 8, Train_acc:95.6%, Train_loss:0.141, Test_acc:92.4%,Test_loss:0.203
Epoch: 9, Train_acc:97.2%, Train_loss:0.143, Test_acc:94.2%,Test_loss:0.170
Epoch:10, Train_acc:93.1%, Train_loss:0.224, Test_acc:93.8%,Test_loss:0.265
Epoch:11, Train_acc:95.3%, Train_loss:0.275, Test_acc:93.8%,Test_loss:0.211
Epoch:12, Train_acc:95.6%, Train_loss:0.164, Test_acc:94.7%,Test_loss:0.196
Epoch:13, Train_acc:98.2%, Train_loss:0.066, Test_acc:93.3%,Test_loss:0.432
Epoch:14, Train_acc:99.0%, Train_loss:0.052, Test_acc:95.1%,Test_loss:0.191
Epoch:15, Train_acc:98.7%, Train_loss:0.087, Test_acc:93.3%,Test_loss:0.248
Epoch:16, Train_acc:96.8%, Train_loss:0.156, Test_acc:93.8%,Test_loss:0.290
Epoch:17, Train_acc:97.7%, Train_loss:0.067, Test_acc:93.8%,Test_loss:0.268
Epoch:18, Train_acc:99.1%, Train_loss:0.036, Test_acc:94.7%,Test_loss:0.388
Epoch:19, Train_acc:99.6%, Train_loss:0.021, Test_acc:95.6%,Test_loss:0.176
Epoch:20, Train_acc:99.9%, Train_loss:0.012, Test_acc:95.1%,Test_loss:0.181
Done

在这里插入图片描述
优化器的详解可以参考链接深度学习 Day11——T11优化器对比实验

总结

通过本文的学习,遇到The freeze_support error问题,网上检索该问题解决方案,顺利解决该问题,并通过改变优化器的方式,提升了原有模型的测试精度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249934.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Gerrit 提交报错missing Change-Id in message footer

直接执行提示的命令&#xff1a; gitdir$(git rev-parse --git-dir); scp -p -P 29418 liyjgerrit.ingageapp.com:hooks/commit-msg ${gitdir}/hooks/ 如果报错&#xff1a; subsystem request failed on channel 0 在.git/hooks目录下看有没有生成commit-msg文件&#xff…

(四)STM32 操作 GPIO 点亮 LED灯 / GPIO工作模式

目录 1. STM32 工程模板中的工程目录介绍 2. GPIO 简介 3. GPIO 框图剖析 1&#xff09;保护二极管及上、下拉电阻 2&#xff09; P-MOS 管和 N-MOS 管 3&#xff09;输出数据寄存器 3.1&#xff09;ODR 端口输出数据寄存器 3.2&#xff09;BSRR 端口位设置/清除寄存器 4&a…

一点技术细节

匈牙利算法&#xff1a; 14-4: 匈牙利算法 Hungarian Algorithm_哔哩哔哩_bilibili 课件&#xff1a;https://github.com/wangshusen/AdvancedAlgorithms.git SWin transformer&#xff1a; Swin Transformer论文精读【论文精读】_哔哩哔哩_bilibili patch:灰色 窗口&…

八、Seata的XA模式

目录 八、Seata的XA模式8.3 XA模式多数据源场景1 环境搭建2、使⽤XA模式解决事务 八、Seata的XA模式 8.3 XA模式多数据源场景 1 环境搭建 建库建表 代码的db.sql中 创建工程 添加依赖 <dependency><groupId>org.springframework.boot</groupId><ar…

ssl证书问题导致本地启动前端服务报500

报错如下&#xff1a;注意查看报错信息 问题&#xff1a;系统原是http&#xff0c;后台调整为https后&#xff0c;ssl证书有点问题&#xff0c; vue项目本地服务&#xff0c;使用代理&#xff0c;webpack默认&#xff0c;证书强校验&#xff0c;导致请求无法发出&#xff0c;后…

COSCon 的台前幕后:KCC@上海 12.2 活动总结

沐浴着冬日暖阳&#xff0c;KCC上海的第三次活动如期而至。第八届中国开源年会&#xff08;COSCon23&#xff09;的顺利举办离不开许多优秀志愿者们的辛勤付出&#xff0c;本次活动作为 COSCon23 的 After Party&#xff0c;我们有幸邀请到了其中的部分台前幕后人员&#xff0c…

c语言单向链表

看如下代码&#xff0c;这是一个完整的可运行的c源文件&#xff0c;要注意的点&#xff1a; c语言程序运行不一定需要头文件NULL其实是 (void*)0&#xff0c;把指针赋值成(void*)0,就是防止程序员不想该指针被引用的时候被引用&#xff0c;引用地址为0的值程序会引起系统中断&…

【Vitamin ; amino acid 】

【NAD NADPH&#xff1b; FMN FAD &#xff1b; NMN -化学】

数字化转型对企业有什么好处?

引言 数字化转型已经成为当今商业领域中的一股强大力量&#xff0c;它不仅仅是简单的技术更新&#xff0c;更是企业发展的重要战略转变。随着科技的迅猛发展和全球化竞争的加剧&#xff0c;企业们正在积极探索如何将数字化的力量融入到他们的运营和战略中。 数字化转型不仅是传…

基于ssm游戏美术外包管理信息系统源码和论文

摘 要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;线下管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&…

spring面试:二、bean的生命周期和循环引入问题(三级缓存、@Lazy)

bean的生命周期 Spring容器在进行实例化时&#xff0c;会将xml配置的的信息封装成一个BeanDefinition对象&#xff0c;Spring根据BeanDefinition来创建Bean对象&#xff0c;里面有很多的属性用来描述Bean。 其中比较重要的是&#xff1a; beanClassName&#xff1a;bean 的类…

救命~这件国风旗袍女儿穿也太好看了吧

这款中式提花改良版旗袍 一眼就戳中了我的心巴 整件精美刺绣好看不大众 两侧网纱的加持增添仙气缥缈感 穿上厚实不显臃肿 袖口处拼接毛毛徒增可爱俏皮的感觉 穿上过年过节满满的焦点呀~

Logstash访问安全访问Elasticsearch集群

生成logstash证书: opensal pkcs12 -in elastic-stack-ca.p12 -clcerts -nokeys > logafash.cer openssl x509 -in logstash.cer -out logstash.pem 编排配置文件

Elasticsearch:使用 OpenAI 生成嵌入并进行向量搜索 - nodejs

在我之前的文章&#xff1a; Elasticsearch&#xff1a;使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation &#xff08;一&#xff09;&#xff08;二&#xff09;&#xff08;三&#xff09;&#xff08;四&#xff09;​​​​​ 我详细地描述了如何使用…

【C++11特性篇】盘点C++11中三种简化声明的方式【auto】【decltype】【nullptr】(3)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.auto&#xff06;范围for二.decltyp…

LVS负载均衡群集 DR模式

目录 1.LVS LVS调度器用的调度方法 固定调度算法 动态调度算法 LVS的工作模式及其工作过程 1、NAT模式&#xff08;VS-NAT&#xff09; 2、直接路由模式&#xff08;VS-DR&#xff09; 3、IP隧道模式&#xff08;VS-TUN&#xff09; 2.DR模式LVS负载均衡群集 LVS-DR模…

掌握Guava字符处理工具:让你的代码更易读、高效

推荐语 请允许我自夸一下&#xff0c;这确实是一篇精彩的技术文章&#xff0c;它深入介绍了Guava类库中强大的字符串处理工具。通过本文&#xff0c;你将了解如何巧妙运用这些工具来简化字符串操作、提高代码可读性和性能。不论是字符串拼接、分割、替换还是正则表达式匹配&am…

IT 人员与加密程序:如何战胜病毒

&#x1f510; 加密程序是攻击者在成功攻击组织时使用最多的恶意软件类型。它们通常会发送到一个庞大的电子邮件地址数据库&#xff0c;看起来像 Word 或 Excel 文档或 PDF 文件。 想象一下&#xff0c;你是会计部门的一名员工。这种格式的文件在电子文档管理系统中被广泛使用…

心理测试网站源码,知己心理React心理健康测试

源码介绍 React心理健康测试网站源码&#xff0c;帮助需要的人更好地了解自已的心理健康状态和人格特征。 React可以在Vite中启用HMR&#xff0c;并且包含了几人EsLint规则。只需要使用react antd-mobile即可 轻松部署完成。

美团赚钱更难了,Q3核心业务利润率下降2%,市值一年缩水近6000亿

从“买菜”卷向“超市”&#xff0c;成立5年的美团买菜更名为“小象超市”。 就在更名公告发布的前一天&#xff0c;美团公布了2023年三季报&#xff0c;尽管三季度营收净利双增长&#xff0c;但其股价却呈相反趋势。 三季报发布次日(11月29日)&#xff0c;美团港股股价单日跌…