云原生之深入解析亿级流量架构之服务限流思路与方法

一、限流思路

① 熔断

  • 系统在设计之初就把熔断措施考虑进去,当系统出现问题时,如果短时间内无法修复,系统要自动做出判断,开启熔断开关,拒绝流量访问,避免大流量对后端的过载请求。
  • 系统也应该能够动态监测后端程序的修复情况,当程序已恢复稳定时,可以关闭熔断开关,恢复正常服务。常见的熔断组件有 Hystrix 以及阿里的 Sentinel,两种互有优缺点,可以根据业务的实际情况进行选择。

在这里插入图片描述

② 服务降级

  • 将系统的所有功能服务进行一个分级,当系统出现问题需要紧急限流时,可将不是那么重要的功能进行降级处理,停止服务,这样可以释放出更多的资源供给核心功能的去用。
  • 例如在电商平台中,如果突发流量激增,可临时将商品评论、积分等非核心功能进行降级,停止这些服务,释放出机器和 CPU 等资源来保障用户正常下单,而这些降级的功能服务可以等整个系统恢复正常后,再来启动,进行补单/补偿处理。除了功能降级以外,还可以采用不直接操作数据库,而全部读缓存、写缓存的方式作为临时降级方案。

③ 延迟处理

  • 这个模式需要在系统的前端设置一个流量缓冲池,将所有的请求全部缓冲进这个池子,不立即处理。然后后端真正的业务处理程序从这个池子中取出请求依次处理,常见的可以用队列模式来实现。
  • 这就相当于用异步的方式去减少了后端的处理压力,但是当流量较大时,后端的处理能力有限,缓冲池里的请求可能处理不及时,会有一定程度延迟。

④ 特权处理

  • 这个模式需要将用户进行分类,通过预设的分类,让系统优先处理需要高保障的用户群体,其它用户群的请求就会延迟处理或者直接不处理。

⑤ 缓存、降级、限流区别

  • 缓存,是用来增加系统吞吐量,提升访问速度提供高并发。
  • 降级,是在系统某些服务组件不可用的时候、流量暴增、资源耗尽等情况下,暂时屏蔽掉出问题的服务,继续提供降级服务,给用户尽可能的友好提示,返回兜底数据,不会影响整体业务流程,待问题解决再重新上线服务
  • 限流,是指在使用缓存和降级无效的场景。比如当达到阈值后限制接口调用频率,访问次数,库存个数等,在出现服务不可用之前,提前把服务降级,只服务好一部分用户。

二、限流的算法

① 计数器算法

  • 简单粗暴,比如指定线程池大小,指定数据库连接池大小、nginx 连接数等,这都属于计数器算法。计数器算法是限流算法里最简单也是最容易实现的一种算法。
  • 举个例子,比如规定对于 A 接口,1 分钟的访问次数不能超过 100 个,那么就可以这么做:在一开始的时候,可以设置一个计数器 counter,每当一个请求过来的时候,counter 就加 1,如果 counter 的值大于 100 并且该请求与第一个请求的间隔时间还在 1 分钟之内,那么说明请求数过多,拒绝访问;如果该请求与第一个请求的间隔时间大于 1 分钟,且 counter 的值还在限流范围内,那么就重置 counter,就是这么简单粗暴。

在这里插入图片描述

② 漏桶算法

  • 漏桶算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会超过桶可接纳的容量时直接溢出,可以看出漏桶算法能强行限制数据的传输速率。

在这里插入图片描述

  • 这样做的好处是:
    • 削峰:有大量流量进入时,会发生溢出,从而限流保护服务可用;
    • 缓冲:不至于直接请求到服务器,缓冲压力,消费速度固定,计算性能固定。

③ 令牌桶算法

  • 令牌桶与漏桶相似,不同的是令牌桶桶中放了一些令牌,服务请求到达后,要获取令牌之后才会得到服务。举个例子,我们平时去食堂吃饭,都是在食堂内窗口前排队的,这就好比是漏桶算法,大量的人员聚集在食堂内窗口外,以一定的速度享受服务,如果涌进来的人太多,食堂装不下了,可能就有一部分人站到食堂外了,这就没有享受到食堂的服务,称之为溢出,溢出可以继续请求,也就是继续排队,那么这样有什么问题呢?
  • 如果这时候有特殊情况,如有些赶时间的志愿者啦、或者高三要高考啦,这种情况就是突发情况,如果也用漏桶算法那也得慢慢排队,这也就没有解决我们的需求,对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。如下图所示,令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。

在这里插入图片描述

  • 令牌桶好处就是,如果某一瞬间访问量剧增或者有突发情况,可以通过改变桶中令牌数量来改变连接数,就好比那个食堂排队吃饭的问题,如果现在不是直接去窗口排队,而是先来楼外拿饭票然后再去排队,那么有高三的学生时可以将增加饭票数量或者优先将令牌给高三的学生,这样比漏桶算法更加灵活。

三、限流的方法

① 并发限流

  • 简单来说就是设置系统阈值总的 QPS 个数,这些也挺常见的,就拿 Tomcat 来说,很多参数就是出于这个考虑。例如:配置的 acceptCount 设置响应连接数,maxConnections 设置瞬时最大连接数,maxThreads 设置最大线程数,并发限流体现在下面几个方面:
    • 限制总并发数(如数据库连接池、线程池);
    • 限制瞬时并发数(nginx 的 limit_conn 模块,用来限制瞬时并发连接数);
    • 限制时间窗口内的平均速率(如 Guava 的 RateLimiter、nginx 的 limit_req 模块,限制每秒的平均速率);
    • 其他的还有限制远程接口调用速率、限制 MQ 的消费速率;
    • 另外还可以根据网络连接数、网络流量、CPU 或内存负载等来限流。
  • 有了并发限流,就意味着在处理高并发的时候多了一种保护机制,不用担心瞬间流量导致系统挂掉或雪崩,最终做到有损服务而不是不服务;但是限流需要评估好,不能乱用,否则一些正常流量出现一些奇怪的问题而导致用户体验很差造成用户流失。

② 接口限流

  • 接口限流分为两个部分,一是限制一段时间内接口调用次数,参照前面限流算法的计数器算法,二是设置滑动时间窗口算法。
  • 接口总数:控制一段时间内接口被调用的总数量,可以参考前面的计数器算法,不再赘述。
  • 接口时间窗口:固定时间窗口算法(也就是前面提到的计数器算法)的问题是统计区间太大,限流不够精确,而且在第二个统计区间时没有考虑与前一个统计区间的关系与影响(第一个区间后半段 + 第二个区间前半段也是一分钟)。为了解决上面提到的临界问题,可以尝试把每个统计区间分为更小的统计区间,更精确的统计计数。

在这里插入图片描述

  • 在上面的例子中,假设 QPS 可以接受 100 次查询/秒,前一分钟前 40 秒访问很低,后 20 秒突增,并且这个持续了一段时间,直到第二分钟的第 40 秒才开始降下来,根据前面的计数方法,前一秒的 QPS 为 94,后一秒的 QPS 为 92,那么没有超过设定参数。但是在中间区域,QPS 达到了 142,这明显超过了允许的服务请求数目,因此固定窗口计数器不太可靠,需要滑动窗口计数器。
  • 计数器算法其实就是固定窗口算法,只是它没有对时间窗口做进一步地划分,所以只有 1 格;由此可见,当滑动窗口的格子划分的越多,也就是将秒精确到毫秒或者纳秒,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。需要注意的是,消耗的空间就越多。

四、限流实现

① guava 实现

  • 引入包:
<!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>28.1-jre</version>
</dependency>
  • 核心代码:
LoadingCache<Long, AtomicLong> counter = CacheBuilder.newBuilder().
	expireAfterWrite(2, TimeUnit.SECONDS)
	.build(new CacheLoader<Long, AtomicLong>() {

		@Override
		public AtomicLong load(Long secend) throws Exception {
			// TODO Auto-generated method stub
			return new AtomicLong(0);
		}
	});
counter.get(1l).incrementAndGet();

② 令牌桶实现

  • 稳定模式(SmoothBursty:令牌生成速度恒定):
public static void main(String[] args) {
    // RateLimiter.create(2)每秒产生的令牌数
    RateLimiter limiter = RateLimiter.create(2);
    // limiter.acquire() 阻塞的方式获取令牌
    System.out.println(limiter.acquire());;
    try {
        Thread.sleep(2000);
    } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
    System.out.println(limiter.acquire());;
    System.out.println(limiter.acquire());;
    System.out.println(limiter.acquire());;
    System.out.println(limiter.acquire());;
    
    System.out.println(limiter.acquire());;
    System.out.println(limiter.acquire());;
}
  • RateLimiter.create(2):容量和突发量,令牌桶算法允许将一段时间内没有消费的令牌暂存到令牌桶中,用来突发消费。
  • 渐进模式(SmoothWarmingUp:令牌生成速度缓慢提升直到维持在一个稳定值):
// 平滑限流,从冷启动速率(满的)到平均消费速率的时间间隔
RateLimiter limiter = RateLimiter.create(2,1000l,TimeUnit.MILLISECONDS);
System.out.println(limiter.acquire());;
try {
    Thread.sleep(2000);
} catch (InterruptedException e) {
    // TODO Auto-generated catch block
    e.printStackTrace();
}
System.out.println(limiter.acquire());;
System.out.println(limiter.acquire());;
System.out.println(limiter.acquire());;
System.out.println(limiter.acquire());;

System.out.println(limiter.acquire());;
System.out.println(limiter.acquire());;
  • 超时:
boolean tryAcquire = limiter.tryAcquire(Duration.ofMillis(11));
  • 在 timeout 时间内是否能够获得令牌,异步执行。

③ 分布式系统限流

  • Nginx + Lua 实现,可以使用 resty.lock 保持原子特性,请求之间不会产生锁的重入,使用 lua_shared_dict 存储数据:
local locks = require "resty.lock"

local function acquire()
    local lock =locks:new("locks")
    local elapsed, err =lock:lock("limit_key") --互斥锁 保证原子特性
    local limit_counter =ngx.shared.limit_counter --计数器

    local key = "ip:" ..os.time()
    local limit = 5 --限流大小
    local current =limit_counter:get(key)

    if current ~= nil and current + 1> limit then --如果超出限流大小
       lock:unlock()
       return 0
    end
    if current == nil then
       limit_counter:set(key, 1, 1) --第一次需要设置过期时间,设置key的值为1--过期时间为1else
        limit_counter:incr(key, 1) --第二次开始加1即可
    end
    lock:unlock()
    return 1
end
ngx.print(acquire())

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249738.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Pycharm第三方库导入失败避坑!

最近遇到了明明安装了 python 第三方库&#xff0c;但是在 pycharm 当中却导入不成功的问题。 使用Pycharm手动安装三方库和自动安装三方库都失败&#xff0c;以及Pycharm终端使用pip命令安装也未解决。网上找各种方法尝试都没成功&#xff0c;原来是一不小心就跳进了虚拟环境…

代码随想录算法训练营 | day52 动态规划 300.最长递增子序列,674.最长连续递增子序列,718.最长重复子数组

刷题 300.最长递增子序列 题目链接 | 文章讲解 | 视频讲解 题目&#xff1a;给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。…

彻底告别pip安装Python第三方库网速慢的问题

方式一、 如果使只下载没几个库 直接: pip install 库名 -i http://mirrors.aliyun.com/pypi/simple/ 方式二、 如果要一直下载库&#xff0c;就可以通过配置pip.ini文件来解决&#xff0c;具体步骤如下所示&#xff1a; 1、打开文件资源管理器 2、搜索%APPDATE% 3、创建一…

LeetCode 2415. 反转二叉树的奇数层:深度优先搜索(DFS)

【LetMeFly】2415.反转二叉树的奇数层&#xff1a;深度优先搜索(DFS) 力扣题目链接&#xff1a;https://leetcode.cn/problems/reverse-odd-levels-of-binary-tree/ 给你一棵 完美 二叉树的根节点 root &#xff0c;请你反转这棵树中每个 奇数 层的节点值。 例如&#xff0c…

CSS盒子的浮动与网页布局(重点,有电影页面案例)

浮动适用于那种盒子的并列布局 CSS 提供了三种传统布局方式(简单说,就是盒子如何进行排列顺序)&#xff1a;  普通流&#xff08;标准流&#xff09;  浮动  定位 标准流&#xff08;普通流/文档流&#xff09; 所谓的标准流: 就是标签按照规定好默认方式排列. 1. 块级…

win10电脑字体大小怎么设置?介绍四种方法

在Win10操作系统中&#xff0c;字体大小的设置对于用户来说是一个非常重要的问题。合适的字体大小能够保护我们的视力&#xff0c;提高我们的工作效率。本文将介绍几种常用的方法来调整Win10电脑的字体大小&#xff0c;帮助用户轻松设置自己喜欢的字体大小。 方法一&#xff1…

C语言写的 mini版的 http 服务器 , 很详细

文章目录 效果展示整体架构流程技术细节完整代码 效果展示 例如&#xff1a;htpp://192.168.23.140/home.html -> 正确的请求格式 home.html 这个资源是放在我们服务器里面的 , 并不是随便访问的资源,当然我们可以放很多的资源进去. 整体架构流程 整个实现的流…

源码解析:Apache RocketMQ重置消费位点

引入 reset offset&#xff0c;即重置消费进度&#xff0c;一般在以下场景中使用&#xff1a; 需要重新消费已经消费过的消息&#xff0c;重置到最早位置或根据时间进行重置。消息积压&#xff0c;不需要消费积压的消息&#xff0c;重置到最新位置&#xff0c;使其从最新位置…

订单管理系统开发经验的总结:优化流程、提升效率的关键实践

前言 一.订单管理系统的架构设计 二.订单系统的详细设计 1.拆分 2.换货 3.发货 4.拦截 5.取消 6.物流回传 三.订单系统的订单状态流转 初始状态 中间状态 异常状态 终态 四.订单系统的关键代码逻辑 五.结语 前言 两年来&#xff0c;整个订单管理系统经过大大小…

[MySQL]数据库概述

目录 1.什么是数据库 2.数据库分类 2.1关系型数据库 2.2非关系型数据库 1.什么是数据库 我们知道&#xff0c;存储数据可以使用文件来存储。那么为什么我们还要大费周章的去设计和使用数据库呢&#xff1f; 因为文件保存数据有以下几个缺点&#xff1a; 1.文件的安全性不…

Attention机制学习

写在前面 注意力机制是一个很不错的科研创新点方向&#xff0c;但是没有系统记录过学习过程&#xff0c;这里记录科研中遇到的各种注意力机制。 1. Attention机制解释 本质上来说用到attention的任务都有Query&#xff0c;Key&#xff0c;Value三个关键components&#xff0c;…

扩展学习|大数据挖掘与智能体ABM建模

出处&#xff1a;计算社会科学_中南大学_中国大学MOOC(慕课) (icourse163.org)https://www.icourse163.org/course/CSU-1466004186 ps&#xff1a;相关内容来自于本人笔记&#xff0c;若有需要请联系原作者&#xff01;个人学习留存&#xff0c;侵权必删&#xff01; 一…

可回收资源的环保螺旋盖葡萄酒

在酿酒师中&#xff0c;选择哪种瓶盖来保存一瓶葡萄酒主要取决于葡萄酒的种类和酿酒师自己的偏好。在20世纪70年代&#xff0c;澳洲朋友引进并推广了一种保存葡萄酒的新方法&#xff0c;这种新方法螺旋盖并在70年代获得专利&#xff0c;投入商业使用&#xff0c;澳大利亚的酿酒…

【STM32】STM32学习笔记-OLED显示屏(10)

00. 目录 文章目录 00. 目录01. OLED显示屏接线图02. OLED函数库03. OLED测试代码04. Keil调试05. 程序下载06. 附录 01. OLED显示屏接线图 02. OLED函数库 oled.h #ifndef __OLED_H #define __OLED_Hvoid OLED_Init(void); void OLED_Clear(void); void OLED_ShowChar(uint8…

图片变成动图如何操作?掌握这个办法就够了

生动有趣的gif动画图片是怎么制作的呢&#xff1f;其实&#xff0c;制作gif动图的方法很简单&#xff0c;无需下载任何软件&#xff0c;使用gif动图制作&#xff08;https://www.gif.cn/&#xff09;工具-GIF中文网。只需要上传jpg、png格式的图片&#xff0c;轻松一键就能在线…

Reinfocement Learning 学习笔记PartⅡ

文章目录 Reinfocement Learning六、随机近似与随机梯度下降&#xff08;Stochastic Approximation & Stochastic Gradient Descent&#xff09;6.1 Robbins-Monro Algorithm6.2 随机梯度下降 七、时序差分方法&#xff08;Temporal-Difference Learning&#xff09;7.1 TD…

OpenAI 承认 ChatGPT 最近的懒惰:由于用户体验到响应缓慢和无用的输出,调查正在进行中

文章目录 一. ChatGPT 指令遵循能力下降引发用户投诉1.1 用户抱怨回应速度慢、敷衍回答、拒绝回答和中断会话 二. OpenAI 官方确认 ChatGPT 存在问题&#xff0c;展开调查三. OpenAI 解释模型行为差异&#xff0c;回应用户质疑四. GPT-4 模型变更受人事动荡和延期影响 一. Chat…

【设计模式--行为型--中介者模式】

设计模式--行为型--中介者模式 中介者模式定义结构案例实现优缺点使用场景 中介者模式 定义 又叫调停模式&#xff0c;定义一个中介角色来封装一系列对象之间的交互&#xff0c;使原有对象之间的耦合松散&#xff0c;且可以独立的改变它们之间的交互。 结构 抽象中介者角色…

IntelliJ IDEA 运行 若依分离版后端

一、本地运行 一、选择打开IntelliJ IDEA项目 二、选择若依项目 如&#xff1a;java123 三、等待右下角的准备工作&#xff08;有进度条的&#xff09;完成 四、修改MySQL 五、修改资源上传目录 六、修改redis 七、然后点击运行 八、成功图 九、测试访问 二、部署服务器运行 …

策略+工厂完成支付方式选择(微信/支付宝),简单实现

需求 传参String payType wechat 使用微信支付传参String payType ali 使用支付宝支付代码不允许出现if-else 思路 把支付当作一个行为&#xff0c;代码中当作一个接口&#xff0c;payService。2个实现类&#xff0c;分别是微信支付实现类WeChatPayServiceImpl&#xff0c…