智能优化算法应用:基于秃鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于秃鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于秃鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.秃鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用秃鹰算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.秃鹰算法

秃鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/113775430
秃鹰算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


秃鹰算法参数如下:

%% 设定秃鹰优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明秃鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/249281.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

实战指南:使用 Nginx 反向代理实现多端口跳转

目录 前言1 实现的效果2 准备两个tomcat服务2.1 启动8080端口的tomcat服务2.2 启动8081端口的tomcat服务 3 Nginx 配置3.1 配置内容3.2 配置说明3.3 location符号的含义和作用 4 开放防火墙端口5 测试与验证结语 前言 在现代 Web 开发中,Nginx作为一款高性能的开源…

FL Studio 21.2.2.3914破解补丁含FL Studio2024 Crack文件及怎么激活FL Studio

FL Studio 21.2.2.3914中文破解版国人习惯称水果编曲, 是一个完整的电音软件音乐制作环境或数字音频工作站。是现在流行的数字音频工作站之一,包括撰写,整理,记录,编辑,电音,混音和掌握专业品质的音乐。 FL Studio 21.2.2.3914 (Windows)原版安装程序破解补丁 软件全名&#x…

索引与优化原理(上)

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 上一篇,我们…

ToolLLM model 以及LangChain AutoGPT Xagent在调用外部工具Tools的表现对比浅析

文章主要谈及主流ToolLLM 以及高口碑Agent 在调用Tools上的一些对比,框架先上,内容会不断丰富与更新。 第一部分,ToolLLM model 先来说主打Function Call 的大模型们 OpenAI GPT 宇宙第一LLM,它的functionCall都知道&#xff0…

nrm 的使用 可以快速切换下载(npm)镜像,解决资源下载慢和运行失败

nrm是什么? 介绍 nrm(npm registry manager) 是 npm 的镜像源管理工具. 有时候国外资源太慢,使用 nrm 可以快速的在 npm 源之间切换 安装 npm install -g nrm 基本使用 查看可选择的源 nrm ls 切换到对应的镜像源 nrm use 对应的镜像 删除镜像源 nrm del 名字 …

数据挖掘目标(客户价值分析)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as snsIn [2]: datapd.read_csv(r../教师文件/air_data.csv)In [3]: data.head()Out[3]: Start_timeEnd_timeFareCityAgeFlight_countAvg_discountFlight_mileage02011/08/182014/0…

网络入门---守护进程

目录标题 什么是守护进程会话的理解setsid函数daemonSelf函数模拟实现测试 什么是守护进程 在前面的学习过程中我们知道了如何使用TCP协议和UDP协议来实现通信,比如说登录xshell运行了服务端: 然后再登录一个xshell运行客户端并向服务端发送信息&#…

笔记本电脑如何安装openwrt

环境: 联想E14笔记本 装机U盘 DiskImage v1.6 刷写工具 immortalwrt镜像 问题描述: 笔记本电脑如何安装openwrt 解决方案: 一、官方版 1.官网下载固件 2.BIOS关闭安全启动改为引导 3.用U盘启动进入PE系统后,需要先用PE系…

国产浪潮服务器:风扇免手动调节脚本

简介:浪潮集团,是中国本土顶尖的大型IT企业之一,中国领先的云计算、大数据服务商。浪潮集团旗下拥有浪潮信息、浪潮软件、浪潮国际,业务涵盖云计算、大数据、工业互联网等新一代信息技术产业领域,为全球120多个国家和地…

JNA实现JAVA调用C/C++动态库

1.JNA JNA全称Java Native Access,是一个建立在经典的JNI技术之上的Java开源框架(https://github.com/twall/jna)。JNA提供一组Java工具类用于在运行期动态访问系统本地库(native library:如Window的dll)而…

计算机网络——数据链路层-可靠传输的实现机制:回退N帧协议GBN(无差错情况、累积确认、有差错情况、发送窗口尺寸)

目录 回退N帧协议GBN 介绍 无差错情况 累积确认 有差错情况 发送窗口尺寸 小结 练习 解析 示意图 上篇中所介绍的停止-等待协议的信道利用率很低;若出现超时重传,则信道利用率更低。 如果发送方在收到接收方的确认分组之前可以连续发送多个数…

Leetcode—2413.最小偶倍数【简单】

2023每日刷题(六十) Leetcode—2413.最小偶倍数 class Solution { public:int smallestEvenMultiple(int n) {return (n % 2 1) * n;} };运行结果 之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏…

局域网环境下的ntp对时

服务端: 此处为v4-sp4服务器 安装ntp,apt-get install ntp -y ,若为离线环境,则安装ntp和libopts25两个包。 配置: 在/etc/ntp.conf的配置文件里 加入 restrict default nomodify notrap noquery restrict 127.0.0.1 rest…

libxlsxwriter - 编译

文章目录 libxlsxwriter - 编译概述笔记编译环境编译思路编译安装组件写个测试程序, 看看编译的组件是否好使END libxlsxwriter - 编译 概述 想换一个新版的libxlsxwriter, 自己编译一个出来. libxlsxwriter依赖zlib, 前面已经成功编译了zlib(zlib - 编译). 笔记 libxlsxwr…

大模型Transformer 推理 :kvCache原理浅析

大模型Transformer 推理 :kvCache原理浅析 kvCache 原理 在采样时,Transformer模型会以给定的提示/上下文作为初始输入进行推理(可以并行处理),然后逐一生成额外的标记来继续完善生成的序列(体现了模型的自回归性质)。在采样过程中,Transformer会执行自注意力操作,为…

若依 ruoyi-vue3 集成aj-captcha实现滑块、文字点选验证码

目录 0. 前言0.1 说明 1. 后端部分1.1 添加依赖1.2. 修改 application.yml1.3. 新增 CaptchaRedisService 类1.4. 添加必须文件1.5. 移除不需要的类1.6. 修改登录方法1.7. 新增验证码开关获取接口1.8. 允许匿名访问 2. 前端部分(Vue3)2.1. 新增依赖 cryp…

C++中STL的概念——零基础/小白向,适合竞赛,初学C++者使用

目录 1.STL的诞生 2. STL的基本概念 3. STL六大组件 4. STL容器,算法,迭代器 容器:存放数据的地方 算法:解决问题的方法 迭代器:容器和算法之间的桥梁 5. STL初始:打印0 ~ 9 的数字 这篇文章是一篇…

day34算法训练|贪心算法

1005.K次取反后最大化的数组和 两次贪心算法思路 1. 数组中有负数时,把绝对值最大的负数取反 2. 数组全为非负数时,一直取反最小的那个数 步骤: 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小…

云仓酒庄为您甄选西班牙葡萄酒

西班牙是一个拥有悠久葡萄酒酿造与饮用历史的国家,其葡萄酒产量位居世界第三位。云仓酒庄的品牌雷盛红酒分享翻开西班产区地图,不少葡萄酒刚入门的朋友会感到头疼,众多产区、分级制度、陈年标准,想要短时间内搞懂实在不容易。不用…

案例069:基于微信小程序的计算机实验室排课与查询系统

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…