智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.差分进化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用差分进化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.差分进化算法

差分进化算法原理请参考:网络博客
差分进化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


差分进化算法参数如下:

%% 设定差分进化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明差分进化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/248167.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FTP、U盘等传统数据安全摆渡方法的6个弊端

数据安全摆渡,即数据在不同的网络之间,进行安全流转。做网间隔离的初衷,就是为了保护数据安全,但是在数据摆渡时,除了安全,企业还是需要考虑其他的要素,比如可靠性、易用性、兼容性等等。而传统…

linux 防火墙systemctl (个人笔记)

查看 systemctl status firewalld 开启 systemctl start firewalld 关闭 systemctl stop firewalld.service 查看所有 firewall-cmd --zonepublic --list-ports 开放端口:// --permanent 永久生效,没有此参数重启后失效 firewall-cmd --zonepublic --add-port9527/…

c语言 词法分析器《编译原理》课程设计 文本形式保存

词法分析器的功能输入源程序,按照构词规则分解成一系列单词符号。单词是语言中具有独立意义的最小单位,包括关键字、标识符、运算符、界符和常量等。 (1) 关键字:是由程序语言定义的具有固定意义的标识符。例如begin,end&#xf…

SpringBoot中日志的使用log4j2

SpringBoot中日志的使用log4j2 1、log4j2介绍 Apache Log4j2 是对 Log4j 的升级,它比其前身 Log4j 1.x 提供了重大改进,并提供了 Logback 中可用的许多改 进,同时修复了 Logback 架构中的一些问题,主要有: 异常处理…

GPDB - 高可用特性 - 同步复制与异步复制

GPDB - 高可用特性 - 同步复制与异步复制 GreenPlum是基于PostgreSQL的分布式数据库,master用于接收用户请求并生成执行计划与分发,当然也可以参与计算;而segment则用于存储数据,将计算的结果传递给master。Segment本身具有高可用…

5.4 Linux KickStart 无人值守安装

1、概念介绍 搭建无人执行安装服务器需要从装网络引导安装操作系统,这样我们就可以不必走到机器那里插入CD-ROM光盘或者U盘手动一台一台安装操作系统,使用网络引导批量部署服务器操作系统。 服务架构:PXE DHCP TFTP Kickstar…

dockerfite创建镜像---INMP+wordpress

目录 搭建dockerfile---lnmp 创建nginx镜像 运行 创建数据库镜像 运行 ​编辑 创建php镜像 运行 搭建dockerfile---lnmp 在192.168.10.201 服务IP地址nginx 172.111.0.10 dockernginxmysql172.111.0.20dockermysqlphp172.111.0.30dockerphp 创建nginx镜像 路径 vim /…

python基本数据类型(一)-字符串

1.字符串 字符串就是一系列字符,在Python中,用引号括起的都是字符串,其中的引号可以是单引号,也可以是双引号,如下所示: "This is a string." This is also a string.这种灵活性让你能够在字符…

【产品经理】产品增效项目落地,项目反哺产品成长

产品和项目是相辅相成的关系,产品的规范、成熟,为项目的快速落地提供支撑,项目的落地反哺产品,促进产品的成长成熟。 软件工程的初期是,我们需要什么,就立项项目,通过项目实现需要。 随着项目的…

用实例域代替序数

在Java中,枚举类型的ordinal()方法返回枚举常量的序数(即其在枚举声明中的位置)。在某些情况下,使用实例域(instance field)代替序数可能更加安全和易读。以下是一个示例,演示如何使用实例域代替…

低代码开发如何快速构建AI应用

随着人工智能(AI)的快速发展,越来越多的企业和开发者开始意识到AI在业务和应用中的重要性。然而,AI应用的开发通常被认为是复杂和耗时的过程,需要大量的编码和数据科学知识。为了解决这个问题,低代码开发平…

图片转HTML-screenshot-to-code

Github地址 https://github.com/abi/screenshot-to-code 在线站 Screenshot to Code 简介 这是一个基于GPT4开发的一个工具站,它可以基于截图生成站点代码,生成速度快且准确。

Linux-----2、虚拟机安装Linux

# 虚拟机安装Linux # 一、学习环境介绍 # 1、虚拟机概述 1、什么是虚拟机软件? 虚拟机软件,有些时候想模拟出一个真实的电脑环境,碍于使用真机安装代价太大,因此而诞生的一款可以模拟操作系统运行的软件。 虚拟机软件目前有2…

DSP定时器0笔记

首先了解开发板TMS320f28335是150Mhz的频率 定时器结构图和概要 定时器0对应的中断是TINT0 大概是这样,时钟sysclkout 进入和TCR控制时钟进入 ,经过标定计数器(stm32的预分频),标定器挂这自动装载寄存器&#xff0c…

Unity中实现ShaderToy卡通火(移植篇)

文章目录 前言一、准备好我们的后处理基础脚本1、C#:2、Shader: 二、开始逐语句对ShaderToy进行转化1、首先,找到我们的主函数 mainImage2、其余的方法全部都是在 mainImage 函数中调用的方法3、替换后的代码(已经没报错了,但是效…

基于ssm旅游网站的设计与实现论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本旅游网站就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息&#x…

rocketmq window测试小Demo 解决找不到或无法加载主类的问题

文章目录 rocketMQ启动1.下在相关的二进制文件2.配置环境变量3.启动NameServer4.启动broker5. MQ 启动!5.1 测试发送数据 6.关闭服务 rocketMQ启动 1.下在相关的二进制文件 下载地址,点击即达 2.配置环境变量 3.启动NameServer 在文件夹下执行cmd进…

嵌入式奇妙之旅:Python与树莓派编程深度探索

💂 个人网站:【 海拥】【神级代码资源网站】【办公神器】🤟 基于Web端打造的:👉轻量化工具创作平台💅 想寻找共同学习交流的小伙伴,请点击【全栈技术交流群】 在这个数字化的时代,嵌入式系统的应…

如何理解 RPC 远程服务调用?

本文主要讲解 RPC 远程服务调用相关的知识。 RPC 远程服务调用是分布式服务架构的基础,无论微服务设计上层如何发展,讨论服务治理都绕不开远程服务调用,那么如何理解 RPC、有哪些常见的 RPC 框架、实现一款 RPC 框架需要哪些技术呢&#xff…

3D点云广义零样本分类的递归循环对比生成网络笔记

1 Title Contrastive Generative Network with Recursive-Loop for 3D point cloud generalized zero-shot classification(Yun Hao, Yukun Su, Guosheng Lin, Hanjing Su, Qingyao Wu)【Pattern Recognition】 2 Conclusion This work aims to facilitate research on 3D poi…