数据结构-07-二叉树

       前面学习的栈、队列等等都是线性表结构。树是一种非线性表结构,比线性表的数据结构要复杂。

1-树tree

       “树”这种数据结构类似我们现实生活中的“树”,这里面每个元素我们叫作“节点”;用来连线相邻节点之间的关系,我们叫作“父子关系”。如下图:

      

       A节点就是B节点的父节点,B节点是A节点的子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫作根节点,也就是图中的节点E。我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

节点的高度:节点到叶子节点的最长路径(边数);
节点的深度:根节点到这个节点所经历的边的个数;
节点的层数:节点的深度+1;
树的高度:根节点的高度。
 

       “高度”这个概念,其实就是从下往上度量,比如我们要度量第10层楼的高度、第13层楼的高度,起点都是地面。所以,树这种数据结构的高度也是一样,从最底层开始计数,并且计数的起点是0。
       “深度”这个概念在生活中是从上往下度量的,比如水中鱼的深度,是从水平面开始度量的。所以,树这种数据结构的深度也是类似的,从根结点开始度量,并且计数起点也是0。
      “层数”跟深度的计算类似,不过,计数起点是1,也就是说根节点的位于第1层。

2-二叉树Binary Tree

       二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点右子。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我们重点看下以下两个二叉树:满二叉树和完全二叉树。

       叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树

       叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树

3-二叉树的存储和表示方式

       想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。
      链式存储法:每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

     

       基于数组的顺序存储法。我们把根节点存储在下标i = 1的位置,那左子节点存储在下标2 * i = 2的位置,右子节点存储在2 * i + 1 = 3的位置。以此类推,B节点的左子节点存储在2 * i = 2 * 2 = 4的位置,右子节点存储在2 * i + 1 = 2 * 2 + 1 = 5的位置。

        如果节点X存储在数组中下标为i的位置,下标为2 * i 的位置存储的就是左子节点,下标为2 * i + 1的位置存储的就是右子节点。反过来,下标为i/2的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样就可以通过下标计算,把整棵树都串起来。一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。


       所以,如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

4-二叉树的遍历

       经典的方法有三种,前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。
       前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。根-左-右
       中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。左-根-右
       后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。左-右-根

      前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,也就是说二叉树遍历的时间复杂度是O(n)

5-二叉查找树Binary Search Tree

       二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。
       二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。

查找:先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。

插入:新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。

删除:删除的情况比较复杂,分情况讨论。
       第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为null。比如删除下图的节点55;
       第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如删除下图的节点13;
      第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。比如删除下图的节点18;

删除后:


       实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

6-二叉查找树的时间复杂度

       不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是O(height)。完全二叉树的高度小于等于logn(以2为底的对数)。二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是O(logn)。

7-二叉查找树 vs 散列表

       散列表的插入、删除、查找操作的时间复杂度可以做到常量级的O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是O(logn),为什么还需要二叉查找树?

       第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在O(n)的时间复杂度内,输出有序的数据序列。
      第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在O(logn)。
       第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比logn小,所以实际的查找速度可能不一定比O(logn)快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
       第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
       最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/247231.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js 实现图片上传

<style>.showFile{width: 200px;height: 200px;border: 1px solid blue;}.showFile img{width: 100px;height: 100px;} </style> <div><input type"file" id"file" multiple><!--展示所上传的文件--><div class"sho…

2023年【上海市安全员B证】考试题库及上海市安全员B证考试资料

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 上海市安全员B证考试题库是安全生产模拟考试一点通总题库中生成的一套上海市安全员B证考试资料&#xff0c;安全生产模拟考试一点通上上海市安全员B证作业手机同步练习。2023年【上海市安全员B证】考试题库及上海市安…

数字孪生项目的开发平台

WEBGL 开发数字孪生项目的流程涵盖了需求分析、场景搭建、模型创建、数据接入、动画与交互、性能优化、测试与部署以及维护与升级等方面。WEBGL 开发数字孪生项目的流程可以分为以下几个步骤&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外…

海外大文件传输好用的平台工具推荐

在当今全球化时代&#xff0c;跨国合作已经成为多个行业和领域的常态。创意人、广告从业者和创作者等经常需要与海外的合作伙伴或客户分享大型的视频、音频、图片等文件。这些文件通常具有较高的质量和分辨率&#xff0c;占用了大量的存储空间和网络带宽。因此&#xff0c;跨国…

设置一个vue文件的全局模板

VsCode在新建一个.vue文件的时候是空白的&#xff0c;需要我们自己输入片段&#xff0c;可这些在每次新建.vue文件都需要自己手敲&#xff0c;所以创建一个模板方便使用 设置vue模板 导入 {"生成 vue 模板": {"prefix": "vue","body"…

Linux查询指定时间点段日志Linux查询指定文件

Linux服务器高效查询日志查询文件 Ⅰ、常用几种日志查询语法Ⅱ、常用几种查询语法 Ⅰ、常用几种日志查询语法 #查询某日志前xx行日志 head -n 行数 日志文件名 #查询某日志后xx行日志 tail -n 行数 日志文件名 #查询固定时间点日志&#xff08;前提是这个时间点确实有日志输出…

差分法详解

前言 差分算法适用于一些需要对数组和序列进行增减、查询和更新操作的问题&#xff0c;可以提高计算效率和降低存储空间的需求。今天我将带大家学习如何使用差分法&#xff0c;会以例题来带大家使用差分法以增进理解。话不多说让我们开始吧&#xff01; 文章目录 一维差分尾声…

常见Web开发安全漏洞的防御手段

一、Web开发安全漏洞的防御手段方案 输入验证和过滤&#xff1a;对用户输入进行严格的验证和过滤&#xff0c;确保输入的数据符合预期的格式和类型&#xff0c;防止恶意输入或注入攻击。参数化查询&#xff1a;使用预编译的SQL语句和参数化查询接口&#xff0c;避免将用户输入…

逻辑回归的介绍和应用

逻辑回归的介绍 逻辑回归&#xff08;Logistic regression&#xff0c;简称LR&#xff09;虽然其中带有"回归"两个字&#xff0c;但逻辑回归其实是一个分类模型&#xff0c;并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热&#xff0c;但实…

vue使用el-tag完成添加标签操作

需求&#xff1a;做一个添加标签的功能&#xff0c;点击添加后输入内容后回车可以添加&#xff0c;并且标签可以删除 1.效果 2.主要代码讲解 鼠标按下后触发handleLabel函数&#xff0c;根据回车的keycode判断用户是不是按下的回车键&#xff0c;回车键键值为13&#xff0c;用…

Selenium IED-安装及简单使用

本文已收录于专栏 《自动化测试》 目录 背景介绍优势特点安装步骤录制脚本总结提升 背景介绍 Selenium 通过使用 WebDriver 支持市场上所有主流浏览器的自动化。 Webdriver 是一个 API 和协议&#xff0c;它定义了一个语言中立的接口&#xff0c;用于控制 web 浏览器的行为。 每…

基于ssm神马物流系统论文

摘 要 本神马物流管理系统设计目标是实现神马物流的信息化管理&#xff0c;提高管理效率&#xff0c;使得神马物流管理作规范化、科学化、高效化。 本文重点阐述了神马物流管理系统的开发过程&#xff0c;以实际运用为开发背景&#xff0c;基于SSMVue框架&#xff0c;运用了Ja…

Zoho Desk与Zendesk详细对比:热门在线客服系统之争

企业需要一款功能强大且丰富的客服系统产品为其解决客户服务的难题。对于了解过Zendesk的企业来讲&#xff0c;可能会考虑到还有哪些产品可供选择&#xff0c;便于对比选择出更合适的产品。这篇文章就为大家展现了一款和Zendesk功能相似的产品——Zoho Desk&#xff0c;在功能、…

香港优才计划DIY申请你以为的不过是幻想,客观评价才能保证通过率!

香港优才计划DIY申请你以为的不过是幻想&#xff0c;客观评价才能保证通过率&#xff01; 香港优才计划申请看似步骤很简单&#xff0c;其实很多细节需要专业人士把控。DIY申请者认为优才申请很简单&#xff0c;自评→准备材料→网上提交→等待获批...事实真的如此吗&#xff1…

postman测试文件上传接口教程,看完就会。。。

postman是一个很好的接口测试软件&#xff0c;有时候接口是Get请求方式的&#xff0c;肯定在浏览器都可以测了&#xff0c;不过对于比较规范的RestFul接口&#xff0c;限定了只能post请求的&#xff0c;那你只能通过工具来测了&#xff0c;浏览器只能支持get请求的接口&#xf…

运筹学经典问题(三):最大流问题

问题描述 给定一个图网络 G ( V , E ) G(V, E) G(V,E)&#xff0c;网络中连边的权重代表最大容量&#xff0c;在这个图中找出从起点到终点流量最大的路径。 数学建模 集合&#xff1a; I I I&#xff1a;点的集合&#xff1b; E E E&#xff1a;边的集合。 常量&#x…

TrustZone之安全虚拟化

在Armv7-A首次引入虚拟化时,它仅在非安全状态中添加。在Armv8.3之前,Armv8也是如此,如下图所示: 如前所述在切换安全状态时,EL3用于托管固件和安全监视器。安全EL0/1托管受信任的执行环境(TEE),由受信任的服务和内核组成。 在安全状态下,没有对多个虚拟机的需…

Mysql进阶-InnoDB引擎事务原理及MVCC

事务原理 事务基础 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 事务的四大特性&#xff1a; 原子性&#xff08;A…

国产Apple Find My「查找」认证芯片-伦茨科技ST17H6x芯片

深圳市伦茨科技有限公司&#xff08;以下简称“伦茨科技”&#xff09;发布ST17H6x Soc平台。成为继Nordic之后全球第二家取得Apple Find My「查找」认证的芯片厂家&#xff0c;该平台提供可通过Apple Find My认证的Apple查找&#xff08;Find My&#xff09;功能集成解决方案。…

人工智能与数据分析:新时代的趋势和机会

目录 写在开头1. 融合AI和数据分析的趋势1.1 趋势变化1.2 数据驱动目标转换 2 对数据分析行业的影响2.1 技能需求2.2 工作流程和角色的变化2.3 创新和业务驱动的数据分析 3.场景变化3.1 场景1&#xff1a;智能决策支持系统3.1.1 智能决策支持系统的架构设计3.1.2 Python代码演示…