椋鸟C语言笔记#26:数据在内存中的存储(大小端字节序)、浮点数的存储(IEEE754)

萌新的学习笔记,写错了恳请斧正。


目录

大小端字节序

什么是大小端

写一个判断大小端的程序

浮点数在内存中的存储(IEEE 754规则)

引入

存储规则解释

读取规则解释

1.阶码不全为0或全为1(规格化数)

2.阶码全为0(非规格化数)

3.阶码全为1,尾数全为0(inf)

4.阶码全为1,尾数不全为0(非数,NaN,Not a Number)

练习

1.浮点数

2.整型存储

a.下面程序的输出为

b.下面两个程序的输出为

c.下面程序的输出为

d.下面两个程序的输出为

e.下面程序的输出为(假设小端环境)


大小端字节序

什么是大小端

首先,我们要知道,整数(short、int、long、long long)在内存中以补码的形式存储,无符号整数(unsigned)在内存中以原始二进制序列存储。

当数据长度小于等于一个字节时 ,很显然计算机就直接存储在一个字节内(内存存储的基本单元是字节)。而大小端字节序,则是超过一个字节的数据在内存中存储的两种方式。

为了更清楚的理解大小端字节序,下面我们创建一个变量a:

#include <stdio.h>

int main()
{
    int a = 0x12345678;
    return 0;
}

我们知道int整型占4个字节,也就是说12、34、56、78会分别存储在4个字节单元中。那么,这4个字节单元在内存中是从高地址向低地址排列还是由低向高就成了一个问题。

我们把78这一头叫做数据的低位字节,12那一头叫做高位字节。那么:

  • 将数据的低位字节存储在内存的高位,就叫大端存储,对应大端机器
  • 将数据的低位字节存储在内存的低位,就叫小端存储,对应小端机器

下面我们在Visual Stodio(x86 Debug)环境下调试上方代码, 并打开内存窗口,观察变量a的内存空间:

这就是将数据的低位字节(78)储存在了内存的低位,是小端存储模式。

我们常用的大多数环境(x86、x64…)都是小端结构( 有计算优势),但是仍然存在大端模式的机器(如KEIL C51)。甚至有些ARM处理器可以让硬件选择采用大端还是小端。
写一个判断大小端的程序

其实很简单,我们截取数字1在内存中的第一个字节即可。

如果输出是1就是小端机器,如果是0就是大端机器。

#include <stdio.h>

int check_sys()
{
	int i = 1;
	return *(char*)&i;
}

int main()
{
	if (check_sys())
		printf("该机器为小端字节序机器\n");
	else
		printf("该机器为大端字节序机器\n");
	return 0;
}

这里先取a的地址、强制类型转换为char*再解引用来取出a在内存中的第一个字节。

注意:这里不能直接将a强制类型转换为char类型来读取第一个字节,因为这样永远只会截取数据最低位的字节,和大小端机器无关。

或者我们也可以用联合体的方式取第一个字节(联合体相关内容在之后的笔记):

int check_sys()
{
    union
    {
        int i;
        char c;
    } u;
    u.i = 1;
    return u.c;
}

浮点数在内存中的存储(IEEE 754规则)

引入

浮点数包括float、double、long double等类型,可写成小数形式(3.14)或科学计数法(1.1E2)

不同浮点数的数据范围在float.h头文件中被规定

下面我们看一段代码:

#include <stdio.h>
int main()
{
	int n = 9;
	float* p = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*p的值为:%f\n", *p);
	
	*p = 9.0;
	printf("n的值为:%d\n", n);
	printf("*p的值为:%f\n", *p);
	
	return 0;
}

这段代码的输出结果为:

n的值为:9
*p的值为:0.000000
n的值为:1091567616
*p的值为:9.000000

明明n与*p在内存中是同一个数,为什么会出现上方的情况呢?

这与浮点数在内存中的存储有关

存储规则解释

浮点数在内存中的存储遵循IEEE 754规则,由电气与电子工程师协会(IEEE)规定

单精度浮点数为例,我们将其分为3个部分存储在内存中(都是01组成的二进制):

  • 符号位S:1位,0代表正数,1代表负数
  • 阶码E:8位,就是科学计数法的指数部分加127(因为其表示精度的是-126次方到127次方,要加上127让阶码从数字1到254便于存储,因此单精度浮点数也叫余127码)(阶码0与255有特殊含义,见下方读取相关内容
  • 尾数M:23位,就是科学计数法中数字小数点后的部分

以数字5.0为例:

  1. 其为正数,则S=0
  2. 其可以表示成二进制科学计数法1.01*2^2,则尾数M为01000000000000000000000
  3. 其科学计数法指数为2加上127得到阶码E=129=10000001(二进制)
  4. 合起来就能得到数字5.0在内存中的存储:0100 0000 1010 0000 0000 0000 0000 0000

对于双精度浮点数,其规则与单精度浮点数类似,但是阶码变为11位(余1023码),尾数变为52位。总字节数由4字节变为8字节。

读取规则解释

读取时有3种情况:

1.阶码不全为0或全为1(规格化数)

读取时阶码减去127(或1023)得到指数部分,尾数加1得到数字部分

所以说单精度浮点数规格化数的指数范围是-126到127

2.阶码全为0(非规格化数)

读取时阶码加一再减去127(或1023)得到指数部分(加一使浮点数取值连续),尾数不加1,用于表示极其接近0的数字

如果尾数也全为0,则代表浮点数的±0

3.阶码全为1,尾数全为0(inf)

被判定为浮点数的无穷,正负由符号位决定,用代码inf表示

4.阶码全为1,尾数不全为0(非数,NaN,Not a Number)

代码NaN表示,用于表示异常数据(比如某个数除以0就会返回NaN,也有可能输出IND-indeterminate不确定的)

练习

1.浮点数

这时上面浮点数存储开头的那一段代码就好理解了

首先第一部分将整型9当做浮点数输出,整型9在内存中存储为:

0000 0000 0000 0000 0000 0000 0000 1001

将其当做浮点数,则S=0,阶码E=00000000,由上面非规格化数内容我们知道这是一个趋近于0的数,所以输出了0.000000

第二部分将浮点数9.0当做整数输出,浮点数9在内存中存储为:

0100 0001 0001 0000 0000 0000 0000 0000

将其当做整型输出即补码转换为原码为:1091567616

2.整型存储
a.下面程序的输出为
#include <stdio.h>

int main()
{
	char a = -1;
	signed char b = -1;
	unsigned char c = -1;
	printf("a=%d,b=%d,c=%d", a, b, c);
	return 0;
}

就是很简单的截取,输出a=-1,b=-1,c=255

b.下面两个程序的输出为
#include <stdio.h>

int main()
{
	char a = -128;
	printf("%u\n", a);
	return 0;
}
#include <stdio.h>

int main()
{
	char a = 128;
	printf("%u\n", a);
	return 0;
}

两个程序的输出结果均为4294967168

也是简单的整型提升的问题

比如第一段程序-128的补码为1111 1111 1111 1111 1111 1111 1000 0000

截取到a为1000 0000,整型提升回1111 1111 1111 1111 1111 1111 1000 0000

其直接二进制转换十进制为4294967168

第二段等价,对于char来说127之上就循环回到-128,所以128与-128在这里没有区别

c.下面程序的输出为
#include <stdio.h>

int main()
{
	char a[1000];
	int i;
	for (i = 0; i < 1000; i++)
	{
		a[i] = -1 - i;
	}
	printf("%d", strlen(a));
	return 0;
}

此代码输出为255

同样的,对于char类型,-128在减一就循环回到了127。所以这里就是从-1一直降到-128,在从127降到1(strlen遇到“\0”结束,其ASCII码为0,所以之后的没意义)

d.下面两个程序的输出为
#include <stdio.h>

unsigned char i = 0;
int main()
{
	for (i = 0; i <= 255; i++)
	{
		printf("hello world\n");
	}
	return 0;
}
#include <stdio.h>

int main()
{
	unsigned int i;
	for (i = 9; i >= 0; i--)
	{
		printf("%u\n", i);
	}
	return 0;
}

这两段代码都是死循环,很简单

e.下面程序的输出为(假设小端环境)
#include <stdio.h>

int main()
{
	int a[4] = { 1, 2, 3, 4 };
	int* ptr1 = (int*)(&a + 1);
	int* ptr2 = (int*)((int)a + 1);
	printf("%x,%x", ptr1[-1], *ptr2);
	return 0;
}

其输出结果为4,2000000(有可能引发读取访问权限冲突)

很好理解,指针1减一指向数组第4个元素,指针2指向第一个元素向后偏移一位字节,也就是略过了数字1内存第一个字节又加上了数字2内存第一个字节。在小端环境下即为0x02000000


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/245019.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙系统走向独立,高校设立“鸿蒙班”,鸿蒙人才紧缺!

近日&#xff0c;华为以及鸿蒙系软件厂商都在积极培养鸿蒙开发人才&#xff0c;产学联动、产教融合是重要的一条路径。目前已有23家985高校、46家211高校已开设或即将开设HarmonyOS相关课程。 一位鸿蒙生态内部人士表示&#xff0c;目前鸿蒙开发人才比较紧缺&#xff0c;而安卓…

图生视频AI技术,1张图零提示词,让静态照片动起来

AI时代的发展速度比我们想象中的快多了&#xff0c;当大部分人刚学会AI生成图片时&#xff0c;现在又开始流行AI生成视频了&#xff0c;正式从图片、文字升级到短视频时代。 最近一段时间&#xff0c;AI生成视频的技术正在突飞猛进。Pika、Runway等大家熟知的海外工具都在不断…

【STM32CubeMX】F103 BxCAN

F103&BxCAN bxCAN总体描述 有一个增强的过滤机制来处理各种类型的报文此外&#xff0c;应用层任务需要更多CPU时间&#xff0c;因此报文接收所需的实时响应程度需要减轻。 接收FIFO的方案允许&#xff0c;CPU花很长时间处理应用层任务而不会丢失报文。 构筑在底层CAN驱动程…

软件设计中如何画各类图之七了解组件图:系统架构的关键视角

目录 1 前言2 组件图基本介绍3 画组件图的步骤4 组件图的用途5 场景及实际场景举例6 结语 1 前言 组件图是一种UML的图形化表示工具&#xff0c;为系统架构提供了重要视角。它描述了系统中各个组件以及它们之间的依赖关系和连接。用于展示系统中的组件、软件模块、以及它们之间…

简单实现Spring容器(五) 实现bean后置处理器BeanPostProcessor机制

阶段5: // 1.编写自己的Spring容器,实现扫描包,得到bean的class对象. // 2.扫描将 bean 信息封装到 BeanDefinition对象,并放入到Map. // 3.初始化单例池并完成getBean() createBean()方法 // 4.完成依赖注入(如果创建某个Bean对象,存在依赖注入,需要进行bean组装操作) 5.bean…

比较好的python书籍,python有什么书推荐

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;比较好的python书籍&#xff0c;python有什么书推荐&#xff0c;现在让我们一起来看看吧&#xff01; 我是在半年前接触到Python的&#xff0c;我之前没有一点编程基础&#xff0c;但在我自学的这半年里&#xff0c;我发…

绿盟 SAS堡垒机 local_user.php 权限绕过漏洞复现

绿盟 SAS堡垒机 local_user.php 权限绕过漏洞复现 一、 产品简介二、漏洞概述三、 复现环境四、漏洞复现五、小龙检测 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&…

jdom利用纯java技术对xml文档进行解析、生成、序列化等各种操作

Jdom对xml文档进行解析、生成、序列化等各种操作。 使用jdom之前&#xff0c;首先要导入jar包&#xff1a;jdom.jar 获得根元素&#xff1a; 首先确定xml文件位置 String xmlPath "./src/ceshi/Test.xml"; //使用的解析器&#xff0c;这里表示默认的解析…

资本热捧下的预制菜,如何挤出泡沫、回归务实?

在这个被快餐和即食文化主宰的时代&#xff0c;预制菜概念持续被资本热炒。 据悉&#xff0c;近30个交易日里&#xff0c;预制菜概念板块已累计上涨超15%&#xff0c;其中&#xff0c;惠发食品、得利斯、春雪食品等个股更是快速拉涨。但究竟谁才能笑到最后&#xff0c;还充满未…

数据结构和算法 - 数组

1、数组 1.1 简介 什么是数组&#xff1f; 他优缺点是什么&#xff1f;具体应用有哪些&#xff1f; 「数组 array」是一种基于顺序存储的线性数据结构&#xff0c;其将相同类型的元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的「索引 index」。 如图&…

IDEA卡顿,进行性能优化设置(亲测有效)——情况一

需求场景 IDEA重新激活后&#xff0c;运行IDEA卡的非常卡顿&#xff0c;没有运行项目&#xff0c;CPU占比也非常高: 原因分析 可能的原因是&#xff0c;在IDEA的配置中&#xff0c;给他分配的空间比较小 解决方式 步骤一 选择顶部导航栏中的Help&#xff0c;然后点击Edi…

Java数据类型相关

数据类型 Java有哪些数据类型 定义&#xff1a;Java语言是强类型语言&#xff0c;对于每一种数据都定义了明确的具体的数据类 型&#xff0c;在内存中分配了不同大小的内存空间。 分类&#xff1a; 基本数据类型 数值型 整数类型(byte,short,int,long) 浮点类型(float,dou…

文本处理工具doctran(集成LLM和NLP库)

今天给大家推荐一款文本处理工具&#xff0c;可以Extract、Redact、Summarize、Refine、Translate、Interrogate&#xff0c;这个工具就是文档转换框架doctran。 欢迎关注公众号 doctran基于OpenAI的GPT模型和开源的NLP库来剖析文本数据。该工具也可以在LangChain框架document…

汇编指令命令

ARM汇编指令学习 工程搭建 汇编编程环境搭建 HN0AE-522LW-NNRAF-63PUS-7IGFH-YF58D 配置编译工具链 为工程配置链接脚本&#xff08;map.lds&#xff09; 将map.lds 复制到工程文件夹(在桌面创建的ARM-ASM文件) 创建汇编文件 接下来我们需要建立一个start.s汇编文件添加到我们的…

基于Microchip 光伏逆变器方案

小编杂谈新能源已经完成了至少5期的博文了&#xff0c;Boss告诉小编&#xff0c;如果还不介绍我们的产品和方案&#xff0c;黄花菜都凉了&#xff0c;所以小编这期博文就重点介绍一下Microchip在储能上的产品介绍&#xff0c;重点聊聊Microchip储能中使用的光伏逆变器的解决方案…

沉浸文旅体验!实时云渲染助力2023广东旅博会智慧文旅元宇宙体验馆上线

2023广东国际旅游产业博览会&#xff08;以下简称旅博会&#xff09;于9月15-17日在广州中国进出口商品交易会展馆A区举办&#xff0c;共设有国际展区、国内展区、智慧文旅展区、文化创意展区、旅游商品展区等五大展区&#xff0c;汇聚了来自全球近40个国家和地区的近千家参展商…

综述 2022-Genome Biology:“AI+癌症multi-omics”融合方法benchmark

Leng, Dongjin, et al. "A benchmark study of deep learning-based multi-omics data fusion methods for cancer." Genome biology 23.1 (2022): 1-32. 被引次数&#xff1a;34作者单位 红色高亮表示写论文中可以借鉴的地方 一、方法和数据集 1. 3个数据集&…

【✅如何针对大Excel做文件读取?】

✅如何针对大Excel做文件读取&#xff1f; &#x1f7e9;如何针对大Excel做文件读取&#x1f7e9;XSSFWorkbook文件读取&#x1f7e9;EasyExcel文件读取 ✅扩展知识&#x1f7e9; EasyExcel简介&#x1f7e9;EasyExcel 为什么内存占用小&#xff1f; &#x1f7e9;如何针对大Ex…

MySQL使用Not in查询效率慢的优化

引言 问题复盘&#xff0c;在查询某个数据不在另一个表中&#xff0c;查询时间非常慢&#xff0c;10几秒。究其原因not in不走索引。那么怎么解决优化呢&#xff0c;下面是简单记录。 原SQL select * from test where a not in ( select a from test2 where status in (1, 2…

由@EnableWebMvc注解引发的Jackson解析异常

同事合了代码到开发分支&#xff0c;并没有涉及到改动的类却报错。错误信息如下&#xff1a; Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is org.springframework.http.conv…