数据结构和算法 - 前置扫盲

数据结构和算法

一、前置扫盲

1、数据结构分类

1.1 逻辑结构:线性与非线性

tip:逻辑结构揭示了数据元素之间的逻辑关系

  • 线性数据结构:元素间存在明确的顺序关系。

    1. 数据按照一定顺序排列,其中元素之间存在一个对应关系,使得它们按照线性顺序排列。
    2. 每个元素都有且仅有一个前驱元素和一个后继元素,除了第一个和最后一个元素外。
    3. 代表:数组、链表、栈、队列、哈希表。
  • 非线性数据结构:元素不是按照序列排列的

    • 元素之间存在多对多的关系,其组织方式不受固定顺序的限制。
    • 非线性数据结构中的元素不是按照序列排列的。
    • 代表:树、堆、图、哈希表。

图例

在这里插入图片描述

1.2 物理结构:顺序与链式

tip:所有数据结构都是基于数组、链表或二者的组合实现的

  • 连续空间存储(顺序)
    1. 特点:数据元素存储在物理空间上是连续的,通过元素的物理地址和相对位置来访问数据。
    2. 优缺点:
      • 优点: 随机访问速度快,存储效率高。
      • 缺点: 插入和删除操作可能涉及大量数据的移动,且需要预先分配连续的内存空间。
    3. 代表:基于数组可实现:栈、队列、哈希表、树、堆、图、矩阵、张量(维度 ≥3 的数组)等。
  • 分散空间存储(链式)
    1. 特点:数据元素存储在物理空间上是分散的,通过指针来连接各个元素。
    2. 优缺点:
      • 优点: 插入和删除操作相对容易,不需要连续的内存空间。
      • 缺点: 不支持快速的随机访问,需要遍历才能找到特定位置的元素。
    3. 代表:基于链表可实现:栈、队列、哈希表、树、堆、图等。

图例

在这里插入图片描述

2、算法效率评估

tip:算法的效率主要评估的是时间和空间,名词称为-时间复杂度和空间复杂度,但是不是统计具体的算法运行时间和使用空间,而是统计算法运行时间和使用空间随着数据量变大时的增长趋势,使用大O计数法表示

2.1 时间复杂度

例子:下列一段代码,分别使用两种方式统计时间复杂度。

void algorithm(int n) {
    int a = 2;  
    a = a + 1;  
    a = a * 2;  
    for (int i = 0; i < n; i++) {  
        System.out.println(0);     
    }
}
2.1.1 统计具体时间
  1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
  2. 评估各种计算操作所需的运行时间,假如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 5 ns 等。
  3. 统计代码中所有的计算操作,并将所有操作的执行时间求和,从而得到运行时间。
// 在某运行平台下
void algorithm(int n) {
    int a = 2;  // 1 ns
    a = a + 1;  // 1 ns
    a = a * 2;  // 10 ns
    // 循环 n 次
    for (int i = 0; i < n; i++) {  // 1 ns ,每轮都要执行 i++
        System.out.println(0);     // 5 ns
    }
}

根据以上方法,可以得到算法的运行时间为 (6n+12) ns

统计算法的运行时间既不合理也不现实

  1. 预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。
  2. 很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
2.1.2 统计增长趋势

“时间增长趋势(是算法运行时间随着数据量变大时的增长趋势)”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 n ,给定三个算法 ABC

// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
    System.out.println(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
    for (int i = 0; i < n; i++) {
        System.out.println(0);
    }
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
    for (int i = 0; i < 1000000; i++) {
        System.out.println(0);
    }
}

在这里插入图片描述

  • 算法 A 只有 1 个打印操作,算法运行时间不随着 n增大而增长。我们称此算法的时间复杂度为“常数阶”。
  • 算法 B 中的打印操作需要循环 n 次,算法运行时间随着 n 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。
  • 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小n 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶

相较于直接统计算法的运行时间,时间复杂度的特点

  • 时间复杂度能够有效评估算法效率。例如,算法 B 的运行时间呈线性增长,在 n>1 时比算法 A 更慢,在n>1000000时比算法 C 更慢。事实上,只要输入数据大小 n 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。
  • 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。
  • 时间复杂度也存在一定的局限性。例如,尽管算法 AC 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 n 较小时,算法 B 明显优于算法 C 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。

具体计算方式:使用函数T(n)演变为O(n)表示。

void algorithm(int n) {//每次调用函数执行的次数
    int a = 1;  // +1
    a = a + 1;  // +1
    a = a * 2;  // +1
    // 循环 n 次
    for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
        System.out.println(0);    // +1
    }
}

设算法的操作数量是一个关于输入数据大小 n 的函数,记为T(n),则以上函数的操作数量为
T ( n ) = 3 + 2 n T(n)=3+2n T(n)=3+2n
T(n)是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶,我们将线性阶的时间复杂度记为O(n),这个数学符号称为「大O记号big-O notationJ,表示函数T(n)的「渐近上界asymptotic upper bound」。

  • 代码的时间复杂度:线性阶时间复杂度
  • 函数表示:T(n)=3+2n
  • 线性阶表示:O(3+2n)
    • 输入的n不受控制,可以为任意数,而时间复杂度是很难计算准确的,所以统计的为最差情况的时间复杂度。
    • 假如输入n的数趋近于∞(无穷),那么常数3可以忽略,同理系数2也可以忽略,无穷和2倍无穷不还是无穷吗
    • 所以最终时间复杂度表示为:O(n)

总结:

计数简化技巧:

  1. 忽略T(n) 中的常数项。因为它们都与 n 无关,所以对时间复杂度不产生影响。
  2. 省略所有系数。例如,循环 2n 次、5n+1 次等,都可以简化记为 n 次,因为 n前面的系数对时间复杂度没有影响。
  3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 1. 点和第 2. 点的技巧。
  4. 最差情况判断:当输入数最差情况为n,趋近于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。
void algorithm(int n) {
    int a = 1;  // +1
    a = a + n;  // +1
    // +5n
    for (int i = 0; i < 5 * n + 1; i++) {
        System.out.println(0);
    }
    // +2n
    for (int i = 0; i < 2 * n; i++) {
        //加n+1
        for (int j = 0; j < n + 1; j++) {
            System.out.println(0);
        }
    }
}

函数表示: T ( n ) = 2 + 5 n + 2 n ( n + 1 ) = 2 n 2 + 7 n + 3 函数表示:T(n)=2+5n+2n(n+1)=2n^2+7n+3 函数表示:T(n)=2+5n+2n(n+1)=2n2+7n+3

大 O 计数法表示: O ( n 2 ) − − − 当 n − > ∞ , n 2 为主导,除去常数、系数、非主导项,使用 大O计数法表示:O(n^2)---当n->∞,n^2为主导,除去常数、系数、非主导项,使用 O计数法表示:O(n2)n>,n2为主导,除去常数、系数、非主导项,使用


拓展:常见大O类型和图例

时间复杂度: O ( 1 ) < O ( l o g n ) < O ( n ) < O ( n l o g n ) < O ( n 2 ) < O ( 2 n ) < O ( n ! ) 时间复杂度:O(1) < O(logn)<O(n)<O(nlogn)<O(n^2)<O(2^n)<O(n!) 时间复杂度:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(2n)<O(n!)

时间复杂度:常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < 指数阶 < 阶层阶 时间复杂度:常数 阶<对数阶<线性阶<线性对数阶<平方阶<指数阶<阶层阶 时间复杂度:常数阶<对数阶<线性阶<线性对数阶<平方阶<指数阶<阶层阶

在这里插入图片描述

  • 线性阶的操作数量相对于输入数据大小 n以线性级别增长。线性阶通常出现在单层循环中

  • 平方阶的操作数量相对于输入数据大小 n 以平方级别增长。平方阶通常出现在嵌套循环中

  • 生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 1 个细胞,分裂一轮后变为 2 个,分裂两轮后变为 4 个,以此类推,分裂 n 轮后有 2^n 个细胞,指数阶常出现于递归函数中。

  • 对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 n ,由于每轮缩减到一半,因此循环次数是 log2⁡n ,即 2^n 的反函数。

    • 在这里插入图片描述
  • 线性对数阶常出现于嵌套循环中

  • 阶乘阶对应数学上的“全排列”问题。给定 n 个互不重复的元素,求其所有可能的排列方案,方案数量为n!,常用于回溯。

2.2 空间复杂度

tip:现在很发达了,内存没以前贵,直接跳过此处

「空间复杂度 space complexity」用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。

算法在运行过程中使用的内存空间主要包括以下几种。

  • 输入空间:用于存储算法的输入数据。
  • 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
  • 输出空间:用于存储算法的输出数据。

一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。

暂存空间可以进一步划分为三个部分。

  • 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
  • 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/243261.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Axure 9基本元件,表单及表格元件简介,表单案例

目录 一.基本元件 1.元件基本介绍 2.基本元件的使用 二.表单及表格元件 三.表单案例 四.简单简历绘制 一.基本元件 1.元件基本介绍 概述 - 在Axure RP中&#xff0c;元件是**构建原型图的基础模块**。 将元件从元件库里拖拽到画布中&#xff0c;即可添加元件到你的原型…

【洛谷算法题】P1422-小玉家的电费【入门2分支结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P1422-小玉家的电费【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…

2023前端面试题总结:JavaScript篇完整版

前端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★ 地址&#xff1a;前端面试题库 JavaScript基础知识 JavaScript有哪些数据类型&#xff0c;它们的区别&#xff1f; Number&#xff08;数字&#xff09;: 用于表示数值&#xff0c;可…

【剑指offer|图解|二分查找】点名 + 统计目标成绩的出现次数

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、剑指offer每日一练 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 一. ⛳️点名1.1 题目1.2 示例1.3 限制1.4 解题思路一c代码 1.5 解题思路二c代码 二. ⛳️统…

[算法每日一练]-双指针 (保姆级教程篇 1) #A-B数对 #求和 #元音字母 #最短连续子数组 #无重复字符的最长子串 #最小子串覆盖 #方块桶

目录 A-B数对 解法一&#xff1a;双指针 解法二&#xff1a;STL二分查找 解法三&#xff1a;map 求和 元音字母 最短连续子数组 无重复字符的最长子串 最小子串覆盖 方块桶 双指针特点&#xff1a;双指针绝不回头 A-B数对 解法一&#xff1a;双指针 先把数列排列成…

电脑出现msvcr120_1.dll丢失如何解决,怎么修复

一、msvcr120.dll_1.dll文件的作用&#xff1a; msvcr120.dll_1.dll是一个动态链接库文件&#xff0c;它是Microsoft Visual C Redistributable Package的一部分。该文件包含了许多常用的函数和类&#xff0c;这些函数和类被许多应用程序所共享和使用。因此&#xff0c;当您在…

成功的云转型之路需要考虑的基本因素

云计算如今已经变得无处不在&#xff0c;并显著影响着日常生活的各个方面。然而&#xff0c;重要的是要注意云计算技术是不断发展的。最近向远程工作的转变促使企业加快数字化转型&#xff0c;更多地采用云计算服务。 即使在新冠疫情消退之后&#xff0c;云计算技术的采用也获得…

【Hive】

一、Hive是什么 Hive是一款建立在Hadoop之上的开源数据仓库系统&#xff0c;将Hadoop文件中的结构化、半结构化数据文件映射成一张数据库表&#xff0c;同时提供了一种类SQL语言&#xff08;HQL&#xff09;&#xff0c;用于访问和分析存在Hadoop中的大型数据集。Hive的核心是将…

java代码编写twitter授权登录

在上一篇内容已经介绍了怎么申请twitter开放的API接口。 下面介绍怎么通过twitter提供的API&#xff0c;进行授权登录功能。 开发者页面设置 首先在开发者页面开启“用户认证设置”&#xff0c;点击edit进行信息编辑。 我的授权登录是个网页&#xff0c;并且只需要进行简单的…

Nginx快速入门

nginx准备 文本概述参考笔记 狂神&#xff1a;https://www.kuangstudy.com/bbs/1353634800149213186 前端vue打包 参考&#xff1a;https://blog.csdn.net/weixin_44813417/article/details/121329335 打包命令&#xff1a; npm run build:prod nginx 下载 网址&#x…

大模型应用_FastGPT

1 功能 整体功能&#xff0c;想解决什么问题 官方说明&#xff1a;FastGPT 是一个基于 LLM 大语言模型的知识库问答系统&#xff0c;提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排&#xff0c;从而实现复杂的问答场景&#xff01;个人体会…

竞赛保研 python 爬虫与协同过滤的新闻推荐系统

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python 爬虫与协同过滤的新闻推荐系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&…

道路坑洞数据集(坑洞目标检测)VOC+YOLO格式650张

路面坑洞的形成原因是由于设计、施工、养护处理不当、控制不适和受气候、环境、地质、水文等自然因素影响&#xff0c;以及车辆的运行和车辆超载运行导致路面破损&#xff0c;出现坑洞的现象。 路面坑洞的分类&#xff1a; &#xff08;1&#xff09;路面混凝土板中坑洞&…

如何使用 Redis 快速实现分布式锁?

本文我们来讨论如何使用 Redis 快速实现分布式锁。 分布式锁有很多种解决方案&#xff0c;前面简单介绍过&#xff0c;Redis 可以通过 set key 方式来实现分布式锁&#xff0c;但实际情况要更加复杂&#xff0c;比如如何确保临界资源的串行执行&#xff0c;如何及时释放&#…

人工智能_机器学习065_SVM支持向量机KKT条件_深度理解KKT条件下的损失函数求解过程_公式详细推导_---人工智能工作笔记0105

之前我们已经说了KKT条件,其实就是用来解决 如何实现对,不等式条件下的,目标函数的求解问题,之前我们说的拉格朗日乘数法,是用来对 等式条件下的目标函数进行求解. KKT条件是这样做的,添加了一个阿尔法平方对吧,这个阿尔法平方肯定是大于0的,那么 可以结合下面的文章去看,也…

node-static 任意文件读取漏洞复现(CVE-2023-26111)

0x01 产品简介 node-static 是 Node.js 兼容 RFC 2616的 HTTP 静态文件服务器处理模块&#xff0c;提供内置的缓存支持。 0x02 漏洞概述 node-static 存在任意文件读取漏洞&#xff0c;攻击者可通过该漏洞读取系统重要文件&#xff08;如数据库配置文件、系统配置文件&#…

生信算法2 - DNA测序算法实践之序列统计

生信序列基本操作算法 建议在Jupyter实践&#xff0c;python版本3.9 1. 读取fastq序列 # fastq序列获取 !wget http://d28rh4a8wq0iu5.cloudfront.net/ads1/data/SRR835775_1.first1000.fastqdef readFastq(filename):# 序列列表sequences []# 质量值列表qualities []with…

一些程序源码及教程的网站合集~

很多时候我们需要一个快速上手的code demo及教程&#xff0c;除了最常用的【github】&#xff0c;一些中文网站可能会帮助我们更好上手~ 这里提供几个中文网站参考&#xff1a; 【51CTO】&#xff1a; Python 动态手势识别系统hmm 手势识别opencv_mob64ca140d96d9的技术博客…

5G工业物联网网关,比4G工业网关强在哪里?

​随着5G技术的广泛应用&#xff0c;越来越多的行业开始探索如何利用5G网络提升效率和创新能力。其中&#xff0c;工业物联网领域是受益最大的领域之一。作为连接物联网设备和网络的关键组件&#xff0c;5G工业物联网网关在这个变革中发挥着至关重要的作用。本文将深入探讨5G工…

【个人版】SpringBoot下Spring-Security核心概念解读【二】

Spring-Security HttpSecurity Spring-Security全局导读&#xff1a; 1、Security核心类设计 2、HttpSecurity结构和执行流程解读 3、Spring-Security个人落地篇 背景&#xff1a; Spring-Security框架的核心架构上一篇已经概述&#xff0c;展示其执行流程及逻辑&#xff0c;但…