SpringBoot进行自然语言处理,利用Hanlp进行文本情感分析

. # 📑前言
本文主要是SpringBoot进行自然语言处理,利用Hanlp进行文本情感分析,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是青衿🥇
☁️博客首页:CSDN主页放风讲故事
🌄每日一句:努力一点,优秀一点

在这里插入图片描述

目录

文章目录

  • **目录**
  • 一、说明
  • 二、自然语言处理简介
  • 三、Hanlp文本分类与情感分析基本概念
    • 语料库
    • 用Map描述
    • 用文件夹描述
    • 数据集实现
    • 训练
    • 分词
    • 特征提取
    • 调参调参
    • 训练
    • 模型
    • 分类
    • 情感分析
  • 四、具体流程
    • 特征提取
    • 训练
    • 测试结果
  • 📑文章末尾


一、说明

自然语言处理已经进入大模型时代,然而从业人员必须了解整个知识体系、发展过程、知识结构,应用范围等一系列知识。本篇将报道此类概况。

二、自然语言处理简介

自然语言处理,或简称NLP,是处理和转换文本的计算机科学学科。它由几个任务组成,这些任务从标记化开始,将文本分成单独的意义单位,应用句法和语义分析来生成抽象的知识表示,然后再次将该表示转换为文本,用于翻译、问答或对话等目的。
在这里插入图片描述

三、Hanlp文本分类与情感分析基本概念

语料库

本文语料库特指文本分类语料库,对应IDataSet接口。而文本分类语料库包含两个概念:文档和类目。一个文档只属于一个类目,一个类目可能含有多个文档。

用Map描述

这种关系可以用Java的Map<String, String[]>来描述,其key代表类目,value代表该类目下的所有文档。用户可以利用自己的文本读取模块构造一个Map<String, String[]>形式的中间语料库,然后利用IDataSet#add(java.util.Map<java.lang.String,java.lang.String[]>)接口将其加入到训练语料库中。

用文件夹描述

这种树形结构也很适合用文件夹描述,即:

/**
 * 加载数据集
 *
 * @param folderPath  分类语料的根目录.目录必须满足如下结构:<br>
 *                    根目录<br>
 *                    ├── 分类A<br>
 *                    │   └── 1.txt<br>
 *                    │   └── 2.txt<br>
 *                    │   └── 3.txt<br>
 *                    ├── 分类B<br>
 *                    │   └── 1.txt<br>
 *                    │   └── ...<br>
 *                    └── ...<br>
 *

每个分类里面都是一些文本文档。任何满足此格式的语料库都可以直接加载。

数据集实现

考虑到大规模训练的时候,文本数量达到千万级,无法全部加载到内存中,所以本系统实现了基于文件系统的FileDataSet。同时,在服务器资源许可的情况下,可以使用基于内存的MemoryDataSet,提高加载速度。两者的继承关系如下:

训练

训练指的是,利用给定训练集寻找一个能描述这种语言现象的模型的过程。开发者只需调用train接口即可,但在实现中,有许多细节。

分词

目前,本系统中的分词器接口一共有两种实现:

但文本分类是否一定需要分词?答案是否定的。 ​ 我们可以顺序选取文中相邻的两个字,作为一个“词”(术语叫bigram)。这两个字在数量很多的时候可以反映文章的主题(参考清华大学2016年的一篇论文《Zhipeng Guo, Yu Zhao, Yabin Zheng, Xiance Si, Zhiyuan Liu, Maosong Sun. THUCTC: An Efficient Chinese Text Classifier. 2016》)。这在代码中对应BigramTokenizer. ​ 当然,也可以采用传统的分词器,如HanLPTokenizer。 ​ 另外,用户也可以通过实现ITokenizer来实现自己的分词器,并通过IDataSet#setTokenizer来使其生效。

特征提取

特征提取指的是从所有词中,选取最有助于分类决策的词语。理想状态下所有词语都有助于分类决策,但现实情况是,如果将所有词语都纳入计算,则训练速度将非常慢,内存开销非常大且最终模型的体积非常大。
本系统采取的是卡方检测,通过卡方检测去掉卡方值低于一个阈值的特征,并且限定最终特征数不超过100万。

调参调参

对于贝叶斯模型,没有超参数需要调节。

训练

本系统实现的训练算法是朴素贝叶斯法,无需用户关心内部细节。另有一个子项目实现了支持向量机文本分类器,可供参考。由于依赖了第三方库,所以没有集成在本项目中。

模型

训练之后,我们就得到了一个模型,可以通过IClassifier#getModel获取到模型的引用。该接口返回一个AbstractModel对象,该对象实现了Serializable接口,可以序列化到任何地方以供部署。 ​ 反序列化后的模型可以通过如下方式加载并构造分类器: ​

NaiveBayesModel model = (NaiveBayesModel) IOUtil.readObjectFrom(MODEL_PATH);
NaiveBayesClassifier naiveBayesClassifier = new NaiveBayesClassifier(model); 

分类

通过加载模型,我们可以得到一个分类器,利用该分类器,我们就可以进行文本分类了。

IClassifier classifier = new NaiveBayesClassifier(model); 

目前分类器接口中与文本分类有关的接口有如下三种: ​

/**
 * 预测分类
 *
 * @param text 文本
 * @return 所有分类对应的分值(或概率, 需要enableProbability)
 * @throws IllegalArgumentException 参数错误
 * @throws IllegalStateException    未训练模型
 */
Map<String, Double> predict(String text) throws IllegalArgumentException, IllegalStateException;

/**
 * 预测分类
 * @param document
 * @return
 */
Map<String, Double> predict(Document document) throws IllegalArgumentException, IllegalStateException;

/**
 * 预测分类
 * @param document
 * @return
 * @throws IllegalArgumentException
 * @throws IllegalStateException
 */
double[] categorize(Document document) throws IllegalArgumentException, IllegalStateException;

/**
 * 预测最可能的分类
 * @param document
 * @return
 * @throws IllegalArgumentException
 * @throws IllegalStateException
 */
int label(Document document) throws IllegalArgumentException, IllegalStateException;

/**
 * 预测最可能的分类
 * @param text 文本
 * @return 最可能的分类
 * @throws IllegalArgumentException
 * @throws IllegalStateException
 */
String classify(String text) throws IllegalArgumentException, IllegalStateException;

/**
 * 预测最可能的分类
 * @param document 一个结构化的文档(注意!这是一个底层数据结构,请谨慎操作)
 * @return 最可能的分类
 * @throws IllegalArgumentException
 * @throws IllegalStateException
 */
String classify(Document document) throws IllegalArgumentException, IllegalStateException; 

classify方法直接返回最可能的类别的String形式,而predict方法返回所有类别的得分(是一个Map形式,键是类目,值是分数或概率),categorize方法返回所有类目的得分(是一个double数组,分类得分按照分类名称的字典序排列),label方法返回最可能类目的字典序。

情感分析

可以利用文本分类在情感极性语料上训练的模型做浅层情感分析。目前公开的情感分析语料库有:中文情感挖掘语料-ChnSentiCorp,语料发布者为谭松波。

接口与文本分类完全一致,请参考com.hankcs.demo.DemoSentimentAnalysis

四、具体流程

特征提取

本系统采取的是卡方检测,通过卡方检测去掉卡方值低于一个阈值的特征,并且限定最终特征数不超过100万。

在这里插入图片描述

在这里插入图片描述

训练

在这里插入图片描述

测试结果

在这里插入图片描述
HanLP Github地址:https://github.com/hankcs/HanLP

HanLP文档地址:https://hanlp.hankcs.com/docs/api/hanlp/pretrained/index.html

📑文章末尾

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/243048.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[Unity+文心知识库]使用百度智能云搭建私有知识库,集成知识库API,打造具备知识库的AI二次元姐姐

1.简述 最近从百度智能云的官方技术支持那边了解到&#xff0c;目前百度千帆大模型平台提供有在线的知识库功能&#xff0c;能够在线上传自己的私人知识库文档&#xff0c;并且配置文心一言模型作为文本生成的引擎&#xff0c;构建自己的私有知识库。之前自己搭建知识库都是用的…

bugku--源代码

查看源代码 发显URL编码 解码 在拼接这一串 拿着去提交就行啦

【Vue】vue增加导航标签

系列文章 【C#】WebAPI&#xff0c;在Windows IIS平台部署 本文链接&#xff1a;https://blog.csdn.net/youcheng_ge/article/details/126539836 【Vue】vue&#xff0c;在Windows IIS平台部署 本文链接&#xff1a;https://blog.csdn.net/youcheng_ge/article/details/13385…

docker compose部署wordpress

准备机器&#xff1a; 192.168.58.151 &#xff08;关闭防火墙和selinux&#xff09; 安装好docker服务 &#xff08;详细参照&#xff1a;http://t.csdnimg.cn/usG0s 中的国内源安装docker&#xff09; 部署wordpress: 创建目录&#xff1a; [rootdocker ~]# mkdir…

Selenium库自动化测试入门

前言 为什么要学selenium&#xff1f;&#xff1f;前面已经学了requests库我们会发现 对于绝大多数动态渲染的网页来说&#xff0c;用requests进行爬虫比较繁琐。 所以我们还是要学习一下selenium库&#xff0c;以帮助我们更高效的爬取网页。 环境&#xff1a; pychar 202…

flutter调试器查看不了副页面(非主页面/子页面)

刚接触flutter&#xff0c;写了两个页面&#xff0c;通过按钮&#xff0c;可以从主页面跳转到副页面&#xff0c;副页面我自己写的一个独立的dart文件&#xff0c;在主页面的代码中导入使用。但是当我运行代码后&#xff0c;点击跳转的时候&#xff0c;却发现查看不到对应的副页…

Linux驱动入门 —— 利用引脚号操作GPIO进行LED点灯

目录 一、字符设备驱动程序框架 编写驱动程序的步骤&#xff1a; 对于 LED 驱动&#xff0c;我们想要什么样的接口&#xff1f; LED 驱动能支持多个板子的基础&#xff1a;分层思想 二、Linux驱动如何指向一个GPIO 直接通过寄存器来操作GPIO 利用引脚号操作GPIO IMX6UL…

STM32的看门狗(WDG)

WDG&#xff08;Watchdog&#xff09;看门狗 看门狗可以监控程序的运行状态&#xff0c;当程序因为设计漏洞、硬件故障、电磁干扰等原因&#xff0c;出现卡死或跑飞现象时&#xff0c;看门狗能及时复位程序&#xff0c;避免程序陷入长时间的罢工状态&#xff0c;保证系统的可靠…

基于C/C++的rapidxml加载xml大文件 - 下部分

下载地址: RapidXml (sourceforge.net)https://rapidxml.sourceforge.net/ 将源码添加到自己的工程中 示例测试大文件耗时: 总共293w行数据&#xff0c;大概耗时不到1s。

Paper Reading: (U2PL) 基于不可靠伪标签的半监督语义分割

目录 简介目标/动机方法Pseudo-LabelingUsing Unreliable Pseudo-Labels 补充知识InfoNCE LossOHEM 实验Comparison with Existing AlternativesAblationEffectiveness of Using Unreliable Pseudo-LabelsAlternative of Contrastive Learning 总结附录U2PL 与 negative learni…

【C语言程序设计】数组程序设计

目录 前言 一、数组的定义和初始化 二、数组的基本操作 三、数组的高级应用 四、程序设计 4.1 程序设计第一题 4.2 程序设计第二题 4.3 程序设计第三题 总结 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助…

论文阅读《DPS-Net: Deep Polarimetric Stereo Depth Estimation》

论文地址&#xff1a;https://openaccess.thecvf.com/content/ICCV2023/html/Tian_DPS-Net_Deep_Polarimetric_Stereo_Depth_Estimation_ICCV_2023_paper.html 概述 立体匹配模型难以处理无纹理场景的匹配&#xff0c;现有的方法通常假设物体表面是光滑的&#xff0c;或者光照是…

设计模式(2)--对象创建(4)--原型

1. 意图 用原型实例指定创建对象的种类&#xff0c;并且通过拷贝这些原型创建新的对象。 2. 两种角色 抽象原型(Prototype)、具体原型(Concrete Prototype) 3. 优点 3.1 对客户隐藏了具体的产品类 3.2 可以在运行时刻增加和删除产品 3.3 可以极大地减少系统所需要的类的数目 …

Weblogic-CVE-2023-21839

一、漏洞概述 RCE漏洞&#xff0c;该漏洞允许未经身份验证的远程&#xff0c;通过T3/IIOP协议网络访问并破坏WebLogic服务器&#xff0c;成功利用此漏洞可导致Oracle WebLogic服务器被接管&#xff0c;通过rmi/ldap远程协议进行远程命令执行,当 JDK 版本过低或本地存在小工具&…

@Scheduled任务调度/定时任务-非分布式

1、功能概述 任务调度就是在规定的时间内执行的任务或者按照固定的频率执行的任务。是非常常见的功能之一。常见的有JDK原生的Timer, ScheduledThreadPoolExecutor以及springboot提供的Schduled。分布式调度框架如QuartZ、Elasticjob、XXL-JOB、SchedulerX、PowerJob等。 本文…

出现 ‘mvn‘ 不是内部或外部命令,也不是可运行的程序或批处理文件 的解决方法

目录 1. 问题所示2. 原理分析3. 解决方法1. 问题所示 下载了Maven,也配置了环境,在环境变量中配置MAVEN_HOME,在用户变量中配置了bin变量 具体如下所示: 用户变量的配置: 结果显示如下所示: 2. 原理分析 HOME变量中会具体到jre变量,如果在用户变量中配置,jre可能…

SpringBoot+Vue3前后端快速整合入门

前言 最近需要维护一个个人项目&#xff0c;由于笔者是一个大后端&#xff0c;所以借此机会把前端学习过程记录一下&#xff0c;方便后续回顾。 前端项目初始化 安装npm 在前端项目初始化时&#xff0c;我们必须要安装好node&#xff0c;官网地址如下&#xff0c;因为笔者后…

数据结构实验任务八:排序算法的实现与分析

问题描述 统计成绩&#xff1a;给出 n 个学生的考试成绩表&#xff0c;每条信息由姓名和分数组成&#xff0c;试设 计一个算法&#xff1a; 1.按分数高低次序&#xff0c;打印出每个学生在考试中获得的名次&#xff0c;分数相同的为同 一名次&#xff1b; 2.按名次列出每个学生…

36V/48V转12V 10A直流降压DC-DC芯片-AH1007

AH1007是一款36V/48V转12V 10A直流降压&#xff08;DC-DC&#xff09;芯片&#xff0c;它是一种高性能的降压变换器&#xff0c;常用于工业、汽车和电子设备等领域。 AH1007采用了先进的PWM调制技术和开关电源控制算法&#xff0c;能够高效地将输入电压从36V/48V降低到12V&…

【Spark精讲】Spark内存管理

目录 前言 Java内存管理 Java运行时数据区 Java堆 垃圾回收机制 Executor内存管理 内存类型 堆内内存 堆外内存 内存管理模式 静态内存管理 统一内存管理 ​编辑 执行内存管理 多任务间内存分配 Shuffle 的内存占用 MemoryOverHead详解 任务内存调节 错误类型…