5. PyTorch——数据处理模块

1.数据加载

在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:

  • __getitem__:返回一条数据,或一个样本。obj[index]等价于obj.__getitem__(index)
  • __len__:返回样本的数量。len(obj)等价于obj.__len__()

这里以Kaggle经典挑战赛"Dogs vs. Cat"的数据为例。"Dogs vs. Cats"是一个分类问题,判断一张图片是狗还是猫,其所有图片都存放在一个文件夹下,根据文件名的前缀判断是狗还是猫。

import numpy as np
import torch as t

import os

from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms as T
class DogCat(Dataset):
    def __init__(self, root):
        imgs = os.listdir(root)        # 所有图片的相对路径
        self.imgs = [os.path.join(root, img) for img in imgs]    # 这里不实际加载图片,只是指定路径,当调用__getitem__时才会真正读图片

    def __getitem__(self, index):
        img_path = self.imgs[index]
        # dog -> 1, cat -> 0
        label = 1 if 'dog' in img_path.split('/')[-1] else 0
        pil_img = Image.open(img_path)
        array = np.asarray(pil_img)
        data = t.from_numpy(array)
        return data, label

    def __len__(self):
        return len(self.imgs)
dataset = DogCat('data/dogcat/')

for img, label in dataset:
    print(img.size(), img.float().mean(), label)
torch.Size([500, 497, 3]) tensor(106.4915) 0
torch.Size([499, 379, 3]) tensor(171.8085) 0
torch.Size([236, 289, 3]) tensor(130.3004) 0
torch.Size([374, 499, 3]) tensor(115.5177) 0
torch.Size([375, 499, 3]) tensor(116.8139) 1
torch.Size([375, 499, 3]) tensor(150.5079) 1
torch.Size([377, 499, 3]) tensor(151.7174) 1
torch.Size([400, 300, 3]) tensor(128.1550) 1

这里返回的数据不适合实际使用,因其具有如下两方面问题:

  • 返回样本的形状不一,因每张图片的大小不一样,这对于需要取batch训练的神经网络来说很不友好
  • 返回样本的数值较大,未归一化至[-1, 1]

针对上述问题,PyTorch提供了torchvision1。它是一个视觉工具包,提供了很多视觉图像处理的工具,其中transforms模块提供了对PIL Image对象和Tensor对象的常用操作。

对PIL Image的操作包括

  • Scale:调整图片尺寸,长宽比保持不变
  • CenterCropRandomCropRandomResizedCrop: 裁剪图片
  • Pad:填充
  • ToTensor:将PIL Image对象转成Tensor,会自动将[0, 255]归一化至[0, 1]

对Tensor的操作包括

  • Normalize:标准化,即减均值,除以标准差
  • ToPILImage:将Tensor转为PIL Image对象

如果要对图片进行多个操作,可通过Compose函数将这些操作拼接起来,类似于nn.Sequential。注意,这些操作定义后是以函数的形式存在,真正使用时需调用它的__call__方法,这点类似于nn.Module。例如要将图片调整为 224 × 224 224\times 224 224×224,首先应构建这个操作trans = Resize((224, 224)),然后调用trans(img)。下面我们就用transforms的这些操作来优化上面实现的dataset。

transform = T.Compose([
    T.Resize(224),              # 缩放图片Image,保持长宽比不变,最短边为224
    T.CenterCrop(224),          # 从图片中间切出224*224的图片
    T.ToTensor(),               # 将图片Image转成Tensor,归一化至[0,1]
    T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5])      # 标准化至[-1,1],规定均值和标准差
])
class DogCat(Dataset):
    def __init__(self, root, transform):
        imgs = os.listdir(root)
        self.imgs = [os.path.join(root, img) for img in imgs]
        self.transform = transform

    def __getitem__(self, index):
        img_path = self.imgs[index]
        # dog->0, cat->1
        label = 0 if 'dog' in img_path.split('/')[-1] else 1
        data = Image.open(img_path)
        if self.transform:
            data = self.transform(data)
        return data, label

    def __len__(self):
        return len(self.imgs)
dataset = DogCat('data/dogcat/', transform=transform)

for img, label in dataset:
    print(img.size(), label)
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0

torchvision已经预先实现了常用的Dataset,包括经典的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用,具体使用方法请参看官方文档1。在这里介绍一个会经常使用到的Dataset——ImageFolder,它的实现和上述的DogCat很相似。ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

  • root:在root指定的路径下寻找图片
  • transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象
  • target_transform:对label的转换
  • loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

from torchvision.datasets import ImageFolder
dataset = ImageFolder('data/dogcat_2/')
dataset.class_to_idx    # cat文件夹的图片对应label 0, dog对应1
{'cat': 0, 'dog': 1}
dataset.imgs     # 所有图片的路径和对应的label
[('data/dogcat_2/cat\\cat.12484.jpg', 0),
 ('data/dogcat_2/cat\\cat.12485.jpg', 0),
 ('data/dogcat_2/cat\\cat.12486.jpg', 0),
 ('data/dogcat_2/cat\\cat.12487.jpg', 0),
 ('data/dogcat_2/dog\\dog.12496.jpg', 1),
 ('data/dogcat_2/dog\\dog.12497.jpg', 1),
 ('data/dogcat_2/dog\\dog.12498.jpg', 1),
 ('data/dogcat_2/dog\\dog.12499.jpg', 1)]
# 没有任何的transform,所以返回的还是PIL Image对象
dataset[0][1]      # 第一维是第几张图,第二维为1返回label
dataset[0][0]      # 为0返回图片数据

在这里插入图片描述

# 加上transform
normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
    T.RandomResizedCrop(224),
    T.RandomHorizontalFlip(),
    T.ToTensor(),
    normalize,
])
dataset = ImageFolder('data/dogcat_2/', transform=transform)
dataset[0][0].size()     # 通道数×图片高×图片宽   C×H×W
torch.Size([3, 224, 224])
to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
to_img(dataset[0][0]*0.2+0.4)

在这里插入图片描述

Dataset只负责数据的抽象,一次调用__getitem__只返回一个样本。前面提到过,在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助我们实现这些功能。

DataLoader的函数定义如下:
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)

  • dataset:加载的数据集(Dataset对象)
  • batch_size:batch size
  • shuffle::是否将数据打乱
  • sampler: 样本抽样,后续会详细介绍
  • num_workers:使用多进程加载的进程数,0代表不使用多进程
  • collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
  • pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
  • drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃
from torch.utils.data import DataLoader

dataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=0, drop_last=False)
dataiter = iter(dataloader)
imgs, labels = next(dataiter)
imgs.size()       # bach_size, channel, height, weight
torch.Size([3, 3, 224, 224])

dataloader是一个可迭代的对象,意味着我们可以像使用迭代器一样使用它,例如:

for batch_datas, batch_labels in dataloader:
    train()

dataiter = iter(dataloader)
batch_datas, batch_labesl = next(dataiter)

在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在__getitem__函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。

class NewDogCat(DogCat):     # 继承前面实现的DogCat数据集
    def __getitem__(self, index):
        try:
            # 调用父类的获取函数,即DogCat.__getitem__(self, index)
            return super(NewDogCat, self).__getitem__(index)
        except:
            return None, None
from torch.utils.data.dataloader import default_collate        # 导入默认的拼接方式

def my_collate_fn(batch):
    batch = list(filter(lambda x:x[0] is not None, batch))     # 过滤为None的数据     
    if len(batch) == 0: 
        return t.Tensor()
    return default_collate(batch)
dataset = NewDogCat('data/dogcat_wrong/', transform=transform)
dataset[5]
(tensor([[[ 0.9020,  1.3333,  2.0000,  ..., -1.0196, -1.0784, -1.1176],
          [ 0.9608,  1.4314,  2.0196,  ..., -0.9804, -1.0588, -1.1176],
          [ 1.0196,  1.5294,  2.0588,  ..., -1.0000, -1.0588, -1.1176],
          ...,
          [-0.2745, -0.1569,  0.1373,  ...,  0.7843,  0.7451,  0.7059],
          [-0.3333, -0.1765,  0.2745,  ...,  0.7255,  0.7059,  0.6667],
          [-0.4706, -0.2353,  0.3137,  ...,  0.7255,  0.7255,  0.6863]],
 
         [[ 0.8235,  1.2549,  1.8824,  ..., -0.4510, -0.4510, -0.4314],
          [ 0.7059,  1.1176,  1.8235,  ..., -0.4510, -0.4510, -0.4706],
          [ 0.6863,  1.1176,  1.8235,  ..., -0.4706, -0.4706, -0.4706],
          ...,
          [-0.1961, -0.0588,  0.2549,  ...,  0.6471,  0.6667,  0.6471],
          [-0.2157, -0.0392,  0.3529,  ...,  0.6667,  0.6863,  0.6863],
          [-0.3333, -0.0980,  0.3725,  ...,  0.7059,  0.7451,  0.7647]],
 
         [[-0.3529,  0.0000,  0.7647,  ...,  0.1176,  0.1373,  0.1373],
          [-0.3333,  0.0588,  0.6863,  ...,  0.0392,  0.0392,  0.0392],
          [-0.2745,  0.1373,  0.6863,  ..., -0.0196,  0.0000,  0.0196],
          ...,
          [-0.8039, -0.7647, -0.4902,  ..., -0.2353, -0.1961, -0.2157],
          [-1.0588, -0.9608, -0.6078,  ..., -0.2549, -0.1765, -0.2157],
          [-1.2941, -1.1569, -0.7059,  ..., -0.2353, -0.1569, -0.1569]]]),
 0)
dataloader = DataLoader(dataset, 2, collate_fn=my_collate_fn, num_workers=0,shuffle=True)
for batch_datas, batch_labels in dataloader:
    print(batch_datas.size(),batch_labels.size())
torch.Size([2, 3, 224, 224]) torch.Size([2])
torch.Size([2, 3, 224, 224]) torch.Size([2])
torch.Size([1, 3, 224, 224]) torch.Size([1])
torch.Size([2, 3, 224, 224]) torch.Size([2])
torch.Size([1, 3, 224, 224]) torch.Size([1])

来看一下上述batch_size的大小。其中第2个的batch_size为1,这是因为有一张图片损坏,导致其无法正常返回。而最后1个的batch_size也为1,这是因为共有9张(包括损坏的文件)图片,无法整除2(batch_size),因此最后一个batch的数据会少于batch_szie,可通过指定drop_last=True来丢弃最后一个不足batch_size的batch。

对于诸如样本损坏或数据集加载异常等情况,还可以通过其它方式解决。例如但凡遇到异常情况,就随机取一张图片代替:

class NewDogCat(DogCat):
    def __getitem__(self, index):
        try:
            return super(NewDogCat, self).__getitem__(index)
        except:
            new_index = random.randint(0, len(self)-1)
            return self[new_index]

相比较丢弃异常图片而言,这种做法会更好一些,因为它能保证每个batch的数目仍是batch_size。但在大多数情况下,最好的方式还是对数据进行彻底清洗。

DataLoader里面并没有太多的魔法方法,它封装了Python的标准库multiprocessing,使其能够实现多进程加速。在此提几点关于Dataset和DataLoader使用方面的建议:

  1. 高负载的操作放在__getitem__中,如加载图片等。
  2. dataset中应尽量只包含只读对象,避免修改任何可变对象,利用多线程进行操作。

第一点是因为多进程会并行的调用__getitem__函数,将负载高的放在__getitem__函数中能够实现并行加速。
第二点是因为dataloader使用多进程加载,如果在Dataset实现中使用了可变对象,可能会有意想不到的冲突。在多线程/多进程中,修改一个可变对象,需要加锁,但是dataloader的设计使得其很难加锁(在实际使用中也应尽量避免锁的存在),因此最好避免在dataset中修改可变对象。例如下面就是一个不好的例子,在多进程处理中self.num可能与预期不符,这种问题不会报错,因此难以发现。如果一定要修改可变对象,建议使用Python标准库Queue中的相关数据结构。

class BadDataset(Dataset):
    def __init__(self):
        self.datas = range(100)
        self.num = 0 # 取数据的次数
    def __getitem__(self, index):
        self.num += 1
        return self.datas[index]

使用Python multiprocessing库的另一个问题是,在使用多进程时,如果主程序异常终止(比如用Ctrl+C强行退出),相应的数据加载进程可能无法正常退出。这时你可能会发现程序已经退出了,但GPU显存和内存依旧被占用着,或通过topps aux依旧能够看到已经退出的程序,这时就需要手动强行杀掉进程。建议使用如下命令:

ps x | grep <cmdline> | awk '{print $1}' | xargs kill
  • ps x:获取当前用户的所有进程
  • grep <cmdline>:找到已经停止的PyTorch程序的进程,例如你是通过python train.py启动的,那你就需要写grep 'python train.py'
  • awk '{print $1}':获取进程的pid
  • xargs kill:杀掉进程,根据需要可能要写成xargs kill -9强制杀掉进程

在执行这句命令之前,建议先打印确认一下是否会误杀其它进程

ps x | grep <cmdline> | ps x

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法:
WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。下面举例说明。

dataset = DogCat('data/dogcat/', transform=transform)

# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weight的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]
weights
[2, 2, 2, 2, 1, 1, 1, 1]
from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(
    weights,
    num_samples=9, 
    replacement=True
)
dataloader = DataLoader(dataset,
                        batch_size=3,
                        sampler=sampler)

for datas, labels in dataloader:
    print(labels.tolist())
[0, 1, 0]
[1, 1, 1]
[1, 1, 1]

  1. http://pytorch.org/docs/master/torchvision/datasets.html ↩︎ ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240392.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙开发之状态管理@Prop和@Link

一、用法 在父子组件需要进行数据同步的时候&#xff0c;可以通过Prop和Link装饰器来做到。在父组件中用State装饰&#xff0c;在自组件中用Prop或Link装饰。 结论&#xff1a;Prop用于子组件只监听父组件的数据改变而改变&#xff0c;自己不对数据改变 Link用于子组件与父组…

Skype的介绍及使用

介绍及使用说明 Windows自带的Skype是一款全球通用的即时通讯软件&#xff0c;它可以让用户通过文字、语音和视频进行免费的在线沟通。下面是Skype的使用说明&#xff1a; 1.安装和登录&#xff1a;如果你的Windows系统中没有预装Skype&#xff0c;你可以在Microsoft官…

锁定屏幕与挂起

概要&#xff1a; 本篇主要讲述Ubuntu22.04中的锁定屏幕和挂起 锁定屏幕就是大家通常所说的息屏、锁屏&#xff0c;英文单词是lock 挂起一般也被称为休眠、睡眠&#xff0c;英文单词是suspend 一、锁定屏幕 1、CtrlL 按下键盘上的CtrlL键&#xff0c;即可锁定屏幕&#x…

【华为鸿蒙系统学习】- HarmonyOS4.0开发工具和环境配置问题总结|自学篇

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 &#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 目录 官方链接 HUAWEI DevEco Studio和SDK下载和升级 | HarmonyOS开发者 安装教程 &#xff08;…

【PTA刷题+代码+详解】求二叉树度为1的结点个数(递归法)

文章目录 题目C代码详解 题目 在二叉树T中&#xff0c;其度为1的结点是指某结点只有左孩子或只有右孩子。利用递归方法求二叉树T的度为1的结点个数。 1&#xff09;如果TNULL&#xff0c;则是空树&#xff0c;度为1的结点个数为0&#xff0c;返回值为0&#xff1b; 2&#xff0…

Python爬虫实战 | 爬取拼多多商品的详情价格SKU数据

本案例将为大家演示如何爬取拼多多商品的详情数据。目的是爬取大量的商品以及商品的评论&#xff0c;所以在程序设计上要考虑到该爬虫的高并发以及持久化存储。爬虫工具选用了Scrapy框架&#xff0c;以满足爬虫的高并发请求任务&#xff1b;持久化存储用了MongoDB&#xff0c;对…

python:五种算法(SSA、WOA、GWO、PSO、GA)求解23个测试函数(python代码)

一、五种算法简介 1、麻雀搜索算法SSA 2、鲸鱼优化算法WOA 3、灰狼优化算法GWO 4、粒子群优化算法PSO 5、遗传算法GA 二、5种算法求解23个函数 &#xff08;1&#xff09;23个函数简介 参考文献&#xff1a; [1] Yao X, Liu Y, Lin G M. Evolutionary programming made…

vue 集成行政区域选择插件region和数据回显

故事&#xff1a;最近&#xff0c;项目需要进行行政区域围栏的绘制&#xff0c;由于老旧项目是利用js保存全国行政区域地址和编码&#xff0c;在选择器select进行匹配显示&#xff0c;但此方法复杂&#xff0c;因此选择集成区域插件region 步骤一&#xff1a;用命令安装region…

Vue3-09-条件渲染-v-show 的基本使用

v-show 的作用 v-show 可以根据条件表达式的值【展示】或【隐藏】html 元素。v-show 的特点 v-show 的实现方式是 控制 dom 元素的 css的 display的属性&#xff0c; 因此&#xff0c;无论该元素是否展示&#xff0c;该元素都会正常渲染在页面上&#xff0c; 当v-show 的 条件…

如何通过 SSH 访问 VirtualBox 的虚机

VirtualBox 是一款免费虚机软件。在用户使用它安装了 linux 以后&#xff0c;它默认只提供了控制台的管理画面。 直接使用控制台管理 Linux 没有使用诸如 putty 或者 vscode 这样的 ssh 远程管理工具方便。那么可不可以直接使用 ssh 访问 VirtualBox 上的 Linux 呢&#xff1f…

GNN 学习笔记

稍微看一下之后备用。 【图神经网络综述】GNN原理&#xff0b;落地应用实现框架全解_gnn实现-CSDN博客 GNN相比CNN最大的区别在于数据结构&#xff0c;CNN一般作用在二维、三维数据里&#xff0c;如图像、表格数据等&#xff0c;可以进行卷积操作。而GNN作用在一个由节点和边…

模拟目录管理 - 华为OD统一考试(C卷)

OD统一考试(C卷) 分值: 200分 题解: Java / Python / C++ 题目描述 实现一个模拟目录管理功能的软件,输入一个命令序列,输出最后一条命令运行结果。 支持命令: 1)创建目录命令: mkdir 目录名称,如mkdir abc为在当前目录创建abc目录,如果已存在同名目录则不执行任何操作…

案例055:基于微信小程序的四六级词汇

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

超简单的新手重装Win10系统教程图解

如果我们的电脑系统出现问题了&#xff0c;那么就可以选择重装安装系统&#xff0c;轻轻松松解决系统问题&#xff0c;从而恢复对电脑的正常使用。但是&#xff0c;作为新手用户不懂很多的装机专业知识&#xff0c;所以重装系统的难度比较大&#xff0c;接下来小编给大家介绍超…

pytest-fixtured自动化测试详解

fixture的作用 1.同unittest的setup和teardown,作为测试前后的初始化设置。 fixture的使用 1.作为前置条件使用 2.fixture的的作用范围 1.作为前置条件使用 pytest.fixture() def a():return 3def test_b(a):assert a3 2.fixture的作用范围 首先实例化更高范围的fixture…

Javascript高频面试题

系列文章目录 文章目录 系列文章目录前言1.JavaScript常见数据类型null 和 undefind区别symbol&#xff08;ES6新增&#xff09;、bigInt&#xff08;ES10新增&#xff09; 2.JavaScript判断数据类型的方式3. 和 区别&#xff0c;分别在什么情况使用&#xff1f;4.变量声明 va…

Unity检测AssetBundle是否循环依赖

原理&#xff1a;bundle的依赖关系构建一个二维的矩阵图&#xff0c;如果对角线相互依赖&#xff08;用1标记&#xff09;则表示循环依赖。 using PlasticGui; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEditor; public cl…

Redis缓存异常问题,常用解决方案总结

前言 Redis缓存异常问题分别是&#xff1a;1.缓存雪崩。2.缓存预热。3.缓存穿透。4.缓存降级。5.缓存击穿&#xff0c;以 及对应Redis缓存异常问题解决方案。 1.缓存雪崩 1.1、什么是缓存雪崩 如果缓存集中在一段时间内失效&#xff0c;发生大量的缓存穿透&#xff0c;所有…

zabbix6入门到精通(3) 预处理

zabbix6入门到精通&#xff08;3&#xff09; 预处理 配置 — 主机 文件系统主项目 vfs.fs.get 测试一下 添加预处理 $[?(.fsname ‘/’)] $[0].inodes.pfree JSONPath参照&#xff1a; https://www.zabbix.com/documentation/6.0/zh/manual/config/items/preprocessi…

【Docker】进阶之路:(十三)Docker Swarm

目录 Docker Swarm架构与概念 Docker Swarm架构 Docker Swarm 相关概念 1.Swarm 2.Node Docker Swarm是Docker官方提供的集群管理工具&#xff0c;它的主要作用是将Docker主机池转变为单个虚拟Docker主机&#xff0c;把若干台Docker主机抽象为一个整体&#xff0c;并且通过…