循环神经网络-1

目录

1 数据集构建

        1.1 数据集的构建函数

        1.2 加载数据并进行数据划分

        1.3 构造Dataset类

2 模型构建

         2.1 嵌入层

         2.2 SRN层

        2.3 线性层

        2.4 模型汇总

3 模型训练

        3.1 训练指定长度的数字预测模型

        3.2 多组训练

        3.3 损失曲线展示

4 模型评价

总结

参考文献


循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络.在循环神经网络中,神经元不但可以接受其他神经元的信息,也可以接受自身的信息,形成具有环路的网络结构.和前馈神经网络相比,循环神经网络更加符合生物神经网络的结构.目前,循环神经网络已经被广泛应用在语音识别、语言模型以及自然语言生成等任务上.

循环神经网络的记忆能力实验

循环神经网络的一种简单实现是简单循环网络(Simple Recurrent Network,SRN).

令向量$\boldsymbol{x}_t \in \mathbb{R}^M$表示在时刻$t$时网络的输入,$\boldsymbol{h_t} \in \mathbb{R}^D$ 表示隐藏层状态(即隐藏层神经元活性值),则$\boldsymbol{h}_t$不仅和当前时刻的输入$\boldsymbol{x}_t$相关,也和上一个时刻的隐藏层状态$\boldsymbol{h}_{t-1}$相关. 简单循环网络在时刻$t$的更新公式为:

\boldsymbol{h}_t = f(\boldsymbol{W}\boldsymbol{x}_t + \boldsymbol{U}\boldsymbol{h}_{t-1} + b),

其中$\boldsymbol{h}_{t}$为隐状态向量,$\boldsymbol{U} \in \mathbb{R}^{D\times D}$状态-状态权重矩阵,$\boldsymbol{W} \in \mathbb{R}^{D\times M}$状态-输入权重矩阵,$\boldsymbol{b}\in \mathbb{R}^{D}$为偏置向量。

如图展示了一个按时间展开的循环神经网络

简单循环网络在参数学习时存在长程依赖问题,很难建模长时间间隔(Long Range)的状态之间的依赖关系。为了测试简单循环网络的记忆能力,本节构建一个数字求和任务进行实验。

数字求和任务的输入是一串数字,前两个位置的数字为0-9,其余数字随机生成(主要为0),预测目标是输入序列中前两个数字的加和。

如果序列长度越长,准确率越高,则说明网络的记忆能力越好.因此,我们可以构建不同长度的数据集,通过验证简单循环网络在不同长度的数据集上的表现,从而测试简单循环网络的长程依赖能力. 

1 数据集构建

我们首先构建不同长度的数字预测数据集DigitSum.

        1.1 数据集的构建函数

由于在本任务中,输入序列的前两位数字为 0 − 9,其组合数是固定的,所以可以穷举所有的前两位数字组合,并在后面默认用0填充到固定长度. 但考虑到数据的多样性,这里对生成的数字序列中的零位置进行随机采样,并将其随机替换成0-9的数字以增加样本的数量.

我们可以通过设置$k$的数值来指定一条样本随机生成的数字序列数量.当生成某个指定长度的数据集时,会同时生成训练集、验证集和测试集。当$k$=3时,生成训练集。当$k$=1时,生成验证集和测试集. 代码实现如下:

import random
import numpy as np

# 固定随机种子
random.seed(0)
np.random.seed(0)


def generate_data(length, k, save_path):
    if length < 3:
        raise ValueError("The length of data should be greater than 2.")
    if k == 0:
        raise ValueError("k should be greater than 0.")
    # 生成100条长度为length的数字序列,除前两个字符外,序列其余数字暂用0填充
    base_examples = []
    for n1 in range(0, 10):
        for n2 in range(0, 10):
            seq = [n1, n2] + [0] * (length - 2)
            label = n1 + n2
            base_examples.append((seq, label))

    examples = []
    # 数据增强:对base_examples中的每条数据,默认生成k条数据,放入examples
    for base_example in base_examples:
        for _ in range(k):
            # 随机生成替换的元素位置和元素
            idx = np.random.randint(2, length)
            val = np.random.randint(0, 10)
            # 对序列中的对应零元素进行替换
            seq = base_example[0].copy()
            label = base_example[1]
            seq[idx] = val
            examples.append((seq, label))

    # 保存增强后的数据
    with open(save_path, "w", encoding="utf-8") as f:
        for example in examples:
            # 将数据转为字符串类型,方便保存
            seq = [str(e) for e in example[0]]
            label = str(example[1])
            line = " ".join(seq) + "\t" + label + "\n"
            f.write(line)

    print(f"generate data to: {save_path}.")


# 定义生成的数字序列长度
lengths = [5, 10, 15, 20, 25, 30, 35]
for length in lengths:
    # 生成长度为length的训练数据
    save_path = f"./datasets/{length}/train.txt"
    k = 3
    generate_data(length, k, save_path)
    # 生成长度为length的验证数据
    save_path = f"./datasets/{length}/dev.txt"
    k = 1
    generate_data(length, k, save_path)
    # 生成长度为length的测试数据
    save_path = f"./datasets/{length}/test.txt"
    k = 1
    generate_data(length, k, save_path)

        注意需要提前把文件夹建好了,如下图所示

结果如下:

        1.2 加载数据并进行数据划分

        为方便使用,本实验提前生成了长度分别为5、10、 15、20、25、30和35的7份数据,存放于“./datasets”目录下,读者可以直接加载使用。代码实现如下:

import os


# 加载数据
def load_data(data_path):
    # 加载训练集
    train_examples = []
    train_path = os.path.join(data_path, "train.txt")
    with open(train_path, "r", encoding="utf-8") as f:
        for line in f.readlines():
            # 解析一行数据,将其处理为数字序列seq和标签label
            items = line.strip().split("\t")
            seq = [int(i) for i in items[0].split(" ")]
            label = int(items[1])
            train_examples.append((seq, label))

    # 加载验证集
    dev_examples = []
    dev_path = os.path.join(data_path, "dev.txt")
    with open(dev_path, "r", encoding="utf-8") as f:
        for line in f.readlines():
            # 解析一行数据,将其处理为数字序列seq和标签label
            items = line.strip().split("\t")
            seq = [int(i) for i in items[0].split(" ")]
            label = int(items[1])
            dev_examples.append((seq, label))

    # 加载测试集
    test_examples = []
    test_path = os.path.join(data_path, "test.txt")
    with open(test_path, "r", encoding="utf-8") as f:
        for line in f.readlines():
            # 解析一行数据,将其处理为数字序列seq和标签label
            items = line.strip().split("\t")
            seq = [int(i) for i in items[0].split(" ")]
            label = int(items[1])
            test_examples.append((seq, label))

    return train_examples, dev_examples, test_examples


# 设定加载的数据集的长度
length = 5
# 该长度的数据集的存放目录
data_path = f"./datasets/{length}"
# 加载该数据集
train_examples, dev_examples, test_examples = load_data(data_path)
print("dev example:", dev_examples[:2])
print("训练集数量:", len(train_examples))
print("验证集数量:", len(dev_examples))
print("测试集数量:", len(test_examples))

输出结果如下: 

        1.3 构造Dataset类

为了方便使用梯度下降法进行优化,我们构造了DigitSum数据集的Dataset类,函数__getitem__负责根据索引读取数据,并将数据转换为张量。代码实现如下:

from torch.utils.data import Dataset
import torch

class DigitSumDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __getitem__(self, idx):
        example = self.data[idx]
        seq = torch.tensor(example[0], dtype=torch.int64)
        label = torch.tensor(example[1], dtype=torch.int64)
        return seq, label

    def __len__(self):
        return len(self.data)

2 模型构建

使用SRN模型进行数字加和任务的模型结构为如图

整个模型由以下几个部分组成:  

(1) 嵌入层:将输入的数字序列进行向量化,即将每个数字映射为向量;  

(2) SRN 层:接收向量序列,更新循环单元,将最后时刻的隐状态作为整个序列的表示;  

(3) 输出层:一个线性层,输出分类的结果.  

         2.1 嵌入层

本任务输入的样本是数字序列,为了更好地表示数字,需要将数字映射为一个嵌入(Embedding)向量。嵌入向量中的每个维度均能用来刻画该数字本身的某种特性。由于向量能够表达该数字更多的信息,利用向量进行数字求和任务,可以使得模型具有更强的拟合能力。

首先,我们构建一个嵌入矩阵(Embedding Matrix)$\boldsymbol{E}\in \mathbb{R}^{10\times M}$,其中第$i$行对应数字$i$的嵌入向量,每个嵌入向量的维度是$M$。如图所示。给定一个组数字序列$\boldsymbol{S} \in \mathbb{R}^{B\times L}$,其中$B$为批大小,$L$为序列长度,可以通过查表将其映射为嵌入表示$\boldsymbol{X}\in \mathbb{R}^{B\times L \times M}$

class Embedding(nn.Module):
    def __init__(self, num_embeddings, embedding_dim):
        super(Embedding, self).__init__()
        self.W = nn.init.xavier_uniform_(torch.empty(num_embeddings, embedding_dim), gain=1.0)

    def forward(self, inputs):
        # 根据索引获取对应词向量
        embs = self.W[inputs]
        return embs


emb_layer = Embedding(10, 5)
inputs = torch.tensor([0, 1, 2, 3])
emb_layer(inputs)

         2.2 SRN层

数字序列$\boldsymbol{S} \in \mathbb{R}^{B\times L}$经过嵌入层映射后,转换为$\boldsymbol{X}\in \mathbb{R}^{B\times L\times M}$,其中$B$为批大小,$L$为序列长度,$M$为嵌入维度。

在时刻$t$,SRN将当前的输入$\boldsymbol{X}_t \in \mathbb{R}^{B \times M}$与隐状态$\boldsymbol{H}_{t-1} \in \mathbb{R}^{B \times D}$进行线性变换和组合,并通过一个非线性激活函数$f(\cdot)$得到新的隐状态,SRN的状态更新函数为:

\boldsymbol{H}_t = \text{Tanh}(\boldsymbol{X}_t\boldsymbol{W} + \boldsymbol{H}_{t-1}\boldsymbol{U} + \boldsymbol{b})

其中$\boldsymbol{W} \in \mathbb{R}^{M \times D}, \boldsymbol{U} \in \mathbb{R}^{D \times D}, \boldsymbol{b} \in \mathbb{R}^{1 \times D}$是可学习参数,$D$表示隐状态向量的维度。

代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F

torch.manual_seed(0)


# SRN模型
class SRN(nn.Module):
    def __init__(self, input_size, hidden_size, W_attr=None, U_attr=None, b_attr=None):
        super(SRN, self).__init__()
        # 嵌入向量的维度
        self.input_size = input_size
        # 隐状态的维度
        self.hidden_size = hidden_size
        # 定义模型参数W,其shape为 input_size x hidden_size
        if W_attr == None:
            W = torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)
        else:
            W = torch.tensor(W_attr, dtype=torch.float32)
        self.W = torch.nn.Parameter(W)
        # 定义模型参数U,其shape为hidden_size x hidden_size
        if U_attr == None:
            U = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)
        else:
            U = torch.tensor(U_attr, dtype=torch.float32)
        self.U = torch.nn.Parameter(U)
        # 定义模型参数b,其shape为 1 x hidden_size
        if b_attr == None:
            b = torch.zeros(size=[1, hidden_size], dtype=torch.float32)
        else:
            b = torch.tensor(b_attr, dtype=torch.float32)
        self.b = torch.nn.Parameter(b)

    # 初始化向量
    def init_state(self, batch_size):
        hidden_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)
        return hidden_state

    # 定义前向计算
    def forward(self, inputs, hidden_state=None):
        # inputs: 输入数据, 其shape为batch_size x seq_len x input_size
        batch_size, seq_len, input_size = inputs.shape

        # 初始化起始状态的隐向量, 其shape为 batch_size x hidden_size
        if hidden_state is None:
            hidden_state = self.init_state(batch_size)

        # 循环执行RNN计算
        for step in range(seq_len):
            # 获取当前时刻的输入数据step_input, 其shape为 batch_size x input_size
            step_input = inputs[:, step, :]
            # 获取当前时刻的隐状态向量hidden_state, 其shape为 batch_size x hidden_size
            hidden_state = F.tanh(torch.matmul(step_input, self.W) + torch.matmul(hidden_state, self.U) + self.b)
        return hidden_state

这里只保留了简单循环网络的最后一个时刻的输出向量。

## 初始化参数并运行
U_attr = [[0.0, 0.1], [0.1, 0.0]]
b_attr = [[0.1, 0.1]]
W_attr = [[0.1, 0.2], [0.1, 0.2]]

srn = SRN(2, 2, W_attr=W_attr, U_attr=U_attr, b_attr=b_attr)

inputs = torch.tensor([[[1, 0], [0, 2]]], dtype=torch.float32)
hidden_state = srn(inputs)
print("hidden_state", hidden_state)

输出结果如下:

PyTorch框架内置了SRN的API torch.nn.RNN

# 这里创建一个随机数组作为测试数据,数据shape为batch_size x seq_len x input_size
batch_size, seq_len, input_size = 8, 20, 32
inputs = torch.randn([batch_size, seq_len, input_size])

# 设置模型的hidden_size
hidden_size = 32
torch_srn = nn.RNN(input_size, hidden_size)
self_srn = SRN(input_size, hidden_size)

self_hidden_state = self_srn(inputs)
torch_outputs, torch_hidden_state = torch_srn(inputs)

print("self_srn hidden_state: ", self_hidden_state.shape)
print("torch_srn outpus:", torch_outputs.shape)
print("torch_srn hidden_state:", torch_hidden_state.shape)

输出结果如下:

可以看到,两者的输出基本是一致的。另外,还可以进行对比两者在运算速度方面的差异。代码实现如下:

import time

# 计算自己实现的SRN运算速度
model_time = 0
for i in range(100):
    strat_time = time.time()
    out = self_srn(inputs)
    if i < 10:
        continue
    end_time = time.time()
    model_time += (end_time - strat_time)
avg_model_time = model_time / 90
print('self_srn speed:', avg_model_time, 's')

# 计算torch内置的SRN运算速度
model_time = 0
for i in range(100):
    strat_time = time.time()
    out = torch_srn(inputs)
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    end_time = time.time()
    model_time += (end_time - strat_time)
avg_model_time = model_time / 90
print('torch_srn speed:', avg_model_time, 's')

输出结果如下:

        2.3 线性层

线性层会将最后一个时刻的隐状态向量$\boldsymbol{H}_L \in \mathbb{R}^{B \times D}$进行线性变换,输出分类的对数几率(Logits)为:

\boldsymbol{Y} = \boldsymbol{H}_L \boldsymbol{W}_o + \boldsymbol{b}_o

其中$\boldsymbol{W}_o \in \mathbb{R}^{D \times 19}$$\boldsymbol{b}_o \in \mathbb{R}^{19}$为可学习的权重矩阵和偏置

> 提醒:在分类问题的实践中,我们通常只需要模型输出分类的对数几率(Logits),而不用输出每个类的概率。这需要损失函数可以直接接收对数几率来损失计算

线性层直接使用torch.nn.Linear算子

        2.4 模型汇总

在定义了每一层的算子之后,我们定义一个数字求和模型Model_RNN4SeqClass,该模型会将嵌入层、SRN层和线性层进行组合,以实现数字求和的功能.

具体来讲,Model_RNN4SeqClass会接收一个SRN层实例,用于处理数字序列数据,同时在__init__函数中定义一个Embedding嵌入层,其会将输入的数字作为索引,输出对应的向量,最后会使用torch.nn.Linear定义一个线性层。

> 提醒:为了方便进行对比实验,我们将SRN层的实例化放在\code{Model_RNN4SeqClass}类外面。通常情况下,模型内部算子的实例化是放在模型里面。

forward函数中,调用上文实现的嵌入层、SRN层和线性层处理数字序列,同时返回最后一个位置的隐状态向量。代码实现如下:

# 基于RNN实现数字预测的模型
class Model_RNN4SeqClass(nn.Module):
    def __init__(self, model, num_digits, input_size, hidden_size, num_classes):
        super(Model_RNN4SeqClass, self).__init__()
        # 传入实例化的RNN层,例如SRN
        self.rnn_model = model
        # 词典大小
        self.num_digits = num_digits
        # 嵌入向量的维度
        self.input_size = input_size
        # 定义Embedding层
        self.embedding = Embedding(num_digits, input_size)
        # 定义线性层
        self.linear = nn.Linear(hidden_size, num_classes)

    def forward(self, inputs):
        # 将数字序列映射为相应向量
        inputs_emb = self.embedding(inputs)
        # 调用RNN模型
        hidden_state = self.rnn_model(inputs_emb)
        # 使用最后一个时刻的状态进行数字预测
        logits = self.linear(hidden_state)
        return logits

# 实例化一个input_size为4, hidden_size为5的SRN
srn = SRN(4, 5)
# 基于srn实例化一个数字预测模型实例
model = Model_RNN4SeqClass(srn, 10, 4, 5, 19)
# 生成一个shape为 2 x 3 的批次数据
inputs = torch.tensor([[1, 2, 3], [2, 3, 4]])
# 进行模型前向预测
logits = model(inputs)
print(logits)

输出结果如下:

3 模型训练

        3.1 训练指定长度的数字预测模型

        基于RunnerV3类进行训练,只需要指定length便可以加载相应的数据。设置超参数,使用Adam优化器,学习率为 0.001,实例化模型,使用第4.5.4节定义的Accuracy计算准确率。使用Runner进行训练,训练回合数设为500。代码实现如下:

(!首先在对应路径下创建两个文件夹命名为checkpoints、images)如下图所示

import os
import random
import torch
import numpy as np
from nndl import Accuracy
from nndl import RunnerV3
from torch.utils.data import DataLoader

# 训练轮次
num_epochs = 500
# 学习率
lr = 0.001
# 输入数字的类别数
num_digits = 10
# 将数字映射为向量的维度
input_size = 32
# 隐状态向量的维度
hidden_size = 32
# 预测数字的类别数
num_classes = 19
# 批大小
batch_size = 8
# 模型保存目录
save_dir = "./checkpoints"

# 通过指定length进行不同长度数据的实验
def train(length):
    print(f"\n====> Training SRN with data of length {length}.")
    # 加载长度为length的数据
    data_path = f"./datasets/{length}"
    train_examples, dev_examples, test_examples = load_data(data_path)
    train_set, dev_set, test_set = DigitSumDataset(train_examples), DigitSumDataset(dev_examples), DigitSumDataset(test_examples)
    train_loader = DataLoader(train_set, batch_size=batch_size)
    dev_loader = DataLoader(dev_set, batch_size=batch_size)
    test_loader = DataLoader(test_set, batch_size=batch_size)
    # 实例化模型
    base_model = SRN(input_size, hidden_size)
    model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes)
    # 指定优化器
    optimizer = torch.optim.Adam(lr=lr, params=model.parameters())
    # 定义评价指标
    metric = Accuracy()
    # 定义损失函数
    loss_fn = nn.CrossEntropyLoss()

    # 基于以上组件,实例化Runner
    runner = RunnerV3(model, optimizer, loss_fn, metric)

    # 进行模型训练
    model_save_path = os.path.join(save_dir, f"best_srn_model_{length}.pdparams")
    runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=100, save_path=model_save_path)

    return runner

nndl.py

import torch


class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标

        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []

        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []

        # 记录全局最优指标
        self.best_score = 0

    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)

        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        custom_print_log = kwargs.get("custom_print_log", None)

        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)

        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')

        # 运行的step数目
        global_step = 0

        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X)
                loss = self.loss_fn(logits, y.long())  # 默认求mean
                total_loss += loss

                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))

                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")

                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()

                if custom_print_log:
                    custom_print_log(self)

                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                self.optimizer.zero_grad()

                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")

                    # 将模型切换为训练模式
                    self.model.train()

                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score

                global_step += 1

            # 当前epoch 训练loss累计值
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)

        print("[Train] Training done!")

    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None

        # 将模型设置为评估模式
        self.model.eval()

        global_step = kwargs.get("global_step", -1)

        # 用于统计训练集的损失
        total_loss = 0

        # 重置评价
        self.metric.reset()

        # 遍历验证集每个批次
        for batch_id, data in enumerate(dev_loader):
            X, y = data

            # 计算模型输出
            logits = self.model(X)

            # 计算损失函数
            loss = self.loss_fn(logits, y.long()).item()
            # 累积损失
            total_loss += loss

            # 累积评价
            self.metric.update(logits, y)

        dev_loss = (total_loss / len(dev_loader))
        dev_score = self.metric.accumulate()

        # 记录验证集loss
        if global_step != -1:
            self.dev_losses.append((global_step, dev_loss))
            self.dev_scores.append(dev_score)

        return dev_score, dev_loss

    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, x, **kwargs):
        # 将模型设置为评估模式
        self.model.eval()
        # 运行模型前向计算,得到预测值
        logits = self.model(x)
        return logits

    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict)


class Accuracy():
    def __init__(self, is_logist=True):
        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0

        self.is_logist = is_logist

    def update(self, outputs, labels):

        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务
        if outputs.shape[1] == 1:  # 二分类
            outputs = torch.squeeze(outputs, dim=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = torch.tensor((outputs >= 0), dtype=torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)
        else:
            # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1)

        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, dim=-1)
        batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).cpu().numpy()
        batch_count = len(labels)

        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count

    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count

    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0

    def name(self):
        return "Accuracy"

        3.2 多组训练

srn_runners = {}

lengths = [10, 15, 20, 25, 30, 35]
for length in lengths:
    runner = train(length)
    srn_runners[length] = runner

训练结果如下;

        3.3 损失曲线展示

        画出各个长度的数字预测模型训练过程中,在训练集和验证集上的损失曲线,实现代码实现如下:


import matplotlib.pyplot as plt
def plot_training_loss(runner, fig_name, sample_step):
    plt.figure()
    train_items = runner.train_step_losses[::sample_step]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]
    plt.plot(train_steps, train_losses, color='#e4007f', label="Train loss")

    dev_steps = [x[0] for x in runner.dev_losses]
    dev_losses = [x[1] for x in runner.dev_losses]
    plt.plot(dev_steps, dev_losses, color='#f19ec2', linestyle='--', label="Dev loss")

    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("step", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')

    plt.savefig(fig_name)
    plt.show()

# 画出训练过程中的损失图
for length in lengths:
    runner = srn_runners[length]
    fig_name = f"./images/6.6_{length}.pdf"
    plot_training_loss(runner, fig_name, sample_step=100)

当L = 10、15、20、25、30、35时的图像如下:

 

4 模型评价

在模型评价时,加载不同长度的效果最好的模型,然后使用测试集对该模型进行评价,观察模型在测试集上预测的准确度. 同时记录一下不同长度模型在训练过程中,在验证集上最好的效果。代码实现如下。

srn_dev_scores = []
srn_test_scores = []
for length in lengths:
    print(f"Evaluate SRN with data length {length}.")
    runner = srn_runners[length]
    # 加载训练过程中效果最好的模型
    model_path = os.path.join(save_dir, f"best_srn_model_{length}.pdparams")
    runner.load_model(model_path)

    # 加载长度为length的数据
    data_path = f"./datasets/{length}"
    train_examples, dev_examples, test_examples = load_data(data_path)
    test_set = DigitSumDataset(test_examples)
    test_loader = DataLoader(test_set, batch_size=batch_size)

    # 使用测试集评价模型,获取测试集上的预测准确率
    score, _ = runner.evaluate(test_loader)
    srn_test_scores.append(score)
    srn_dev_scores.append(max(runner.dev_scores))

for length, dev_score, test_score in zip(lengths, srn_dev_scores, srn_test_scores):
    print(f"[SRN] length:{length}, dev_score: {dev_score}, test_score: {test_score: .5f}")

输出结果如下:

接下来,将SRN在不同长度的验证集和测试集数据上的表现,绘制成图片进行观察。 

import matplotlib.pyplot as plt

plt.plot(lengths, srn_dev_scores, '-o', color='#e4007f',  label="Dev Accuracy")
plt.plot(lengths, srn_test_scores,'-o', color='#f19ec2', label="Test Accuracy")

#绘制坐标轴和图例
plt.ylabel("accuracy", fontsize='large')
plt.xlabel("sequence length", fontsize='large')
plt.legend(loc='upper right', fontsize='x-large')

fig_name = "./images/6.7.pdf"
plt.savefig(fig_name)
plt.show()

输出结果如下:

        展示了SRN模型在不同长度数据训练出来的最好模型在验证集和测试集上的表现。可以看到,随着序列长度的增加,验证集和测试集的准确度整体趋势是降低的,这同样说明SRN模型保持长期依赖的能力在不断降低. 

总结

本次实验代码的总量较大,但是paddle转torch却只需要很少的一部分代码,但是最开始训练的时候,没注意到需要创建两个文件夹,多跑了两次,之后为了观看数据也还多跑了三次,但是我发现这组数据的波动很大,大部分正确率也不高,应该是后来的为了梯度爆炸打的实验做铺垫。

参考文献

[1].邱锡鹏.《神经网络与深度学习》[J].中文信息学报,2020,34(07):4.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

记录一下如何使用python生成二维码 并简单练习命令行参数供初学者参考

主代码main.py 后面是演示效果图&#xff1a; import argparse import sysimport qrcode import os qr qrcode.QRCode(version1,error_correctionqrcode.constants.ERROR_CORRECT_L,box_size10,border4, ) fileList[] fileName[]parserargparse.ArgumentParser(description生…

Uncaught ReferenceError: jQuery is not defined解决方法

当我在写java的Maven项目时&#xff0c;出现了这样的一个报错信息&#xff1a; 我一直找代码&#xff0c;抓包&#xff0c;调试&#xff0c;比对代码 jQuery未定义就是指JS的导包没有导进来&#xff01;&#xff01;&#xff01;&#xff01; 导进来就运行正常啦

Docker部署Nacos集群并用nginx反向代理负载均衡

首先找到Nacos官网给的Github仓库&#xff0c;里面有docker compose可以快速启动Nacos集群。 文章目录 一. 脚本概况二. 自定义修改1. example/cluster-hostname.yaml2. example/.env3. env/mysql.env4. env/nacos-hostname.env 三、运行四、nginx反向代理&#xff0c;负载均衡…

二、SpringFramework 介绍

2.1 Spring 和 SpringFramework概念 https://spring.io/projects 广义的 Spring&#xff1a;Spring 技术栈&#xff08;全家桶&#xff09; 广义上的 Spring 泛指以 Spring Framework 为基础的 Spring 技术栈。 经过十多年的发展&#xff0c;Spring 已经不再是一个单纯的应…

OpenHarmony 如何去除系统锁屏应用

前言 OpenHarmony源码版本&#xff1a;4.0release / 3.2 release 开发板&#xff1a;DAYU / rk3568 一、3.2版本去除锁屏应用 在源码根目录下&#xff1a;productdefine/common/inherit/rich.json 中删除screenlock_mgr组件的编译配置&#xff0c;在rich.json文件中搜索th…

保姆级:Windows Server 2012上安装.NET Framework 3.5

目录 一.问题所在无法在安装SQL server2008&#xff08;2012&#xff09; 1.无法安装一下功能 .NET Framework 3.5 二.解决措施 1、打开服务器管理器 2、添加角色和功能 3、选择安装功能 4、指定备用源路径 5、配置本地文件路径 一.问题所在无法在安装SQL server2008&…

西南交通大学【数据结构实验8】

实验内容及要求&#xff1a; 编写控制台应用程序&#xff0c;提供以下菜单项&#xff1a; 插入元素 从键盘输入若干两两互不相同的非0整数&#xff0c;直到输入0时停止。将输入的所有非0整数按输入次序插入二叉排序树(初始时是空树)。 插入某个非0整数时&#xff0c;若该整…

算法Day30 餐厅的套餐

餐厅的套餐 Description 假设有一家餐厅&#xff0c;菜单上有n道菜可供选择&#xff0c;现在需要从中选择k道菜组成一份套餐。请设计一个算法&#xff0c;返回所有可能但互不相同的菜品组合。 Input 不同菜品的id各不相同&#xff0c;分别为1,2,3…n,输入内容依次为n和k的值&a…

skynet 中 mongo 模块运作的底层原理解析

文章目录 前言总览全流程图涉及模块关系连接数据库函数调用流程图数据库操作函数调用流程图涉及到的代码文件 建立连接SCRAMSASL 操作数据库结语参考链接 前言 这篇文章总结 skynet 中 mongo 的接入流程&#xff0c;代码解析&#xff0c;读完它相信你对 skynet 中的 mongo 调用…

Python:核心知识点整理大全16-笔记

目录 8.2.3 默认值 8.2.4 等效的函数调用 8.2.5 避免实参错误 8.3 返回值 8.3.1 返回简单值 formatted_name.py 8.3.2 让实参变成可选的 8.3.3 返回字典 往期快速传送门&#x1f446;&#xff08;在文章最后&#xff09;&#xff1a; 8.2.3 默认值 编写函数时&#xff…

Docker镜像构建:深入Dockerfile创建自定义镜像

Docker的强大之处在于其能够通过Dockerfile定义和构建自定义镜像&#xff0c;为应用提供独立、可移植的运行环境。在这篇博客文章中&#xff0c;将深入探讨Docker镜像构建的核心概念&#xff0c;通过更加丰富的示例代码&#xff0c;帮助大家全面理解和掌握构建自定义镜像的技术…

机器学习笔记 - 基于C# + .net framework 4.8的ONNX Runtime进行分类推理

该示例是从官方抄的,演示了如何使用 Onnx Runtime C# API 运行预训练的 ResNet50 v2 ONNX 模型。 我这里的环境基于.net framework 4.8的一个winform项目,主要依赖下面版本的相关库。 Microsoft.Bcl.Numerics.8.0.0 Microsoft.ML.OnnxRuntime.Gpu.1.16.3 SixLabors.ImageShar…

掌握iText:轻松处理PDF文档-高级篇-添加水印

前言 iText作为一个功能强大、灵活且广泛应用的PDF处理工具&#xff0c;在实际项目中发挥着重要作用。通过这些文章&#xff0c;读者可以深入了解如何利用iText进行PDF的创建、编辑、加密和提取文本等操作&#xff0c;为日常开发工作提供了宝贵的参考和指导。 掌握iText&…

并发编程-线程等待唤醒机制

目录 前言 ​编辑 线程等待和唤醒的方法 wait() 方法&#xff1a; notify() 方法&#xff1a; 注意事项和建议&#xff1a; 我的其他博客 前言 程等待唤醒机制是多线程编程中用于线程之间协调和通信的一种机制。在多线程环境中&#xff0c;有时候一个线程需要等待某个条件…

【大数据】Doris 架构

Doris 架构 Doris 的架构很简洁&#xff0c;只设 FE&#xff08;Frontend&#xff09;、BE&#xff08;Backend&#xff09;两种角色、两个进程&#xff0c;不依赖于外部组件&#xff0c;方便部署和运维&#xff0c;FE、BE 都可线性扩展。 ✅ Frontend&#xff08;FE&#xff0…

C++_类的定义和使用

目录 1、类的引用 1.1 类的成员函数 1.2 类成员函数的声明和定义 2、类的定义 2.1 类的访问限定&#xff08;封装&#xff09; 3、类重名问题 4、类的实例化 4.1 类的大小 5、隐含的this指针 5.1 空指针问题 结语&#xff1a; 前言&#xff1a; C的类跟c语言中的结…

Standoff 12 网络演习

在 11 月 21 日至 24 日于莫斯科举行的 "Standoff 12 "网络演习中&#xff0c;Positive Technologies 公司再现了其真实基础设施的一部分&#xff0c;包括软件开发、组装和交付的所有流程。安全研究人员能够在安全的环境中测试系统的安全性&#xff0c;并尝试将第三方…

GO闭包实现原理(汇编级讲解)

go语言闭包实现原理(汇编层解析) 1.起因 今天开始学习go语言,在学到go闭包时候,原本以为go闭包的实现方式就是类似于如下cpp lambda value通过值传递,mutable修饰可以让value可以修改,但是地址不可能一样value通过引用传递,但是在其他地方调用时,这个value局部变量早就释放,…

低多边形植物模型法线贴图

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 当谈到游戏角色的3D模型风格时&#xff0c;有几种不同的风格&#xf…

深度学习在人体动作识别领域的应用:开源工具、数据集资源及趋动云GPU算力不可或缺

人体动作识别检测是一种通过使用计算机视觉和深度学习技术&#xff0c;对人体姿态和动作进行实时监测和分析的技术。该技术旨在从图像或视频中提取有关人体姿态、动作和行为的信息&#xff0c;以便更深入地识别和理解人的活动。 人体动作识别检测的基本步骤包括&#xff1a; 数…