基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(四)

目录

  • 前言
  • 引言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
  • 模块实现
    • 1. 数据预处理
    • 2. 模型构建
    • 3. 模型训练及保存
    • 4. 模型生成
  • 系统测试
    • 1. 训练准确率
    • 2. 测试效果
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

博主前段时间发布了一篇有关方言识别和分类模型训练的博客,在读者的反馈中发现许多小伙伴对方言的辨识和分类表现出浓厚兴趣。鉴于此,博主决定专门撰写一篇关于方言分类的博客,以满足读者对这一主题的进一步了解和探索的需求。上篇博客可参考:

《基于Python+WaveNet+CTC+Tensorflow智能语音识别与方言分类—深度学习算法应用(含全部工程源码)》

引言

本项目以科大讯飞提供的数据集为基础,通过特征筛选和提取的过程,选用WaveNet模型进行训练。旨在通过语音的梅尔频率倒谱系数(MFCC)特征,建立方言和相应类别之间的映射关系,解决方言分类问题。

首先,项目从科大讯飞提供的数据集中进行了特征筛选和提取。包括对语音信号的分析,提取出最能代表语音特征的MFCC,为模型训练提供有力支持。

其次,选择了WaveNet模型进行训练。WaveNet模型是一种序列生成器,用于语音建模,在语音合成的声学建模中,可以直接学习采样值序列的映射,通过先前的信号序列预测下一个时刻点值的深度神经网络模型,具有自回归的特点。

在训练过程中,利用语音的MFCC特征,建立了方言和相应类别之间的映射关系。这样,模型能够识别和分类输入语音的方言,并将其划分到相应的类别中。

最终,通过这个项目,实现了方言分类问题的解决方案。这对于语音识别、语音助手等领域具有实际应用的潜力,也有助于保护和传承各地区的语言文化。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括Python环境、TensorFlow环境、JupyterNotebook环境、PyCharm环境。

详见博客。

模块实现

本项目包括4个模块:数据预处理、模型构建、模型训练及保存、模型生成。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

本部分包括数据介绍、数据测试和数据处理。

详见博客。

2. 模型构建

数据加载进模型之后,需要定义模型结构并优化损失函数。

详见博客。

3. 模型训练及保存

本部分包括模型训练、模型保存和映射保存。

详见博客。

4. 模型生成

将训练好的.h5模型文件放入总目录下:信息系统设计方言种类识别/fangyan.h5

相关代码如下:

#打开映射
with open('resources.pkl', 'rb') as fr:
    [class2id, id2class, mfcc_mean, mfcc_std] = pickle.load(fr)
model = load_model('fangyan.h5')
#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/*.pcm')

将保存的方言和种类之间映射关系.pkl文件放到总文件目录下:信息系统设计/方言种类识别/resources.pkl。相关代码如下:

#打开保存的方言和种类之间的映射
with open('resources.pkl', 'rb') as fr:
    [class2id, id2class, mfcc_mean, mfcc_std] = pickle.load(fr)

在单机上加载训练好的模型,随机选择一条语音进行分类。新建测试主运行文件main.py,加载库之后,调用生成的模型文件获得预测结果。

相关代码如下:

#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/*.pcm')
#通过random模块随机提取一条语音数据
path = np.random.choice(paths, 1)[0]
label = path.split('/')[1]
print(label, path)
#本部分的相关代码
# -*- coding:utf-8 -*-
import numpy as np
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
import librosa
from python_speech_features import mfcc
import pickle
import wave
import glob
#打开映射
with open('resources.pkl', 'rb') as fr:
    [class2id, id2class, mfcc_mean, mfcc_std] = pickle.load(fr)
model = load_model('fangyan.h5')
#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/*.pcm')
#通过random模块随机提取一条语音数据
path = np.random.choice(paths, 1)[0]
label = path.split('/')[1]
print(label, path)
#语音分片处理
mfcc_dim = 13
sr = 16000
min_length = 1 * sr
slice_length = 3 * sr
#提取语音信号的参数
def load_and_trim(path, sr=16000):
    audio = np.memmap(path, dtype='h', mode='r')
    audio = audio[2000:-2000]
    audio = audio.astype(np.float32)
    energy = librosa.feature.rmse(audio)
    frames = np.nonzero(energy >= np.max(energy) / 5)
    indices = librosa.core.frames_to_samples(frames)[1]
    audio = audio[indices[0]:indices[-1]] if indices.size else audio[0:0]
    slices = []
    for i in range(0, audio.shape[0], slice_length):
        s = audio[i: i + slice_length]
        slices.append(s)
        return audio, slices
#提取MFCC特征进行测试
audio, slices = load_and_trim(path)
X_data = [mfcc(s, sr, numcep=mfcc_dim) for s in slices]
X_data = [(x - mfcc_mean) / (mfcc_std + 1e-14) for x in X_data]
maxlen = np.max([x.shape[0] for x in X_data])
X_data = pad_sequences(X_data, maxlen, 'float32', padding='post', value=0.0)
print(X_data.shape)
#预测方言种类并输出
prob = model.predict(X_data)
prob = np.mean(prob, axis=0)
pred = np.argmax(prob)
prob = prob[pred]
pred = id2class[pred]
print('True:', label)
print('Pred:', pred, 'Confidence:', prob)

系统测试

本部分包括训练准确率及测试效果。

1. 训练准确率

绘制损失函数曲线和准确率曲线,经过10轮训练后,准确率将近100%,验证集准确率在89%左右。相关代码如下:

train_loss = history.history['loss']
valid_loss = history.history['val_loss']
plt.plot(train_loss,label='训练集')
plt.plot(valid_loss,label='验证集')
plt.legend(loc='upperright')
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.show()
#训练损失
#验证损失
#绘图
train acc = history.history['acc']
valid_acc = history.history['val_acc']
plt.plot(train_acc,label='训练集')
plt.plot(valid acc,label='验证集')
plt.legend(loc='upper right')
plt.xlabel('迭代次数')
plt.ylabel('准确率')
plt.show()

随着训练次数的增多,模型在训练数据、测试数据上的损失和准确率逐渐收敛,最终趋于稳定,如图3和图4所示。

在这里插入图片描述

图3 损失函数曲线

在这里插入图片描述

图4 准确率曲线

2. 测试效果

在本地服务器端进行测试,使用PyCharm调用保存的模型和映射。设置PyCharm运行环境,找到本地Python环境并导入,如图所示。

在这里插入图片描述

从本地随机抽取一段语音进行测试,相关代码如下:

#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/* / .pcm')
#通过 random模块随机提取一条语音数据
path = np.random.choice(paths, 1)[0]
label=path.split('/')[1]
print(label,path)
paths=glob.glob('D:/课堂导读/信息系统设计/方言种类分类/data/*/dev/*/*.pcm')
#预测方言种类并输出
prob=model.predict(X_data)
prob = np.mean(prob,axis=0)
pred = np.argmax(prob)
prob = prob[pred]
pred = id2class[pred]
print('True:',label)
print('Pred:', pred, 'Confidence:', prob)

在PyCharm上编辑运行,得到的分类结果与语音片段一致,如图所示。

在这里插入图片描述

相关其它博客

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(一)

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(二)

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(三)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/239941.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

动态规划学习——通符串匹配,正则表达式

目录 ​编辑 一,通符串匹配 1.题目 2.题目接口 3,解题思路及其代码 二,正则表达 1.题目 2.题目接口 3.解题思路及其代码 三,交错字符串 1.题目 2,题目接口 3.解题思路及其代码 一,通符串匹配 1…

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(三)

目录 前言引言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建1)定义模型结构2)优化损失函数 3. 模型训练及保存1)模型训练2)模型保存3)映射保存 相关其它博客工程源代码下载其它资料下载…

让植被管理更精准:数据可视化的新利器

【小编整理了300可视化大屏源文件,需要可后台私~!】 在当今时代,数据可视化技术已经成为了一个非常重要的技术。对于植被管理来说,数据可视化也有着非常重要的作用。通过将植被管理数据可视化,我们可以更加清晰地了解植…

Apache Flink(十一):Flink集群部署-Standalone集群部署

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. 节点划分

SpringCloud-高级篇(七)

前面在微服务里整合了Seata,下面利用Seata去解决分布式事务的问题,回去学习Seata中的四种解决方案 :首先学习XA模式 (1)XA模式 RM在前面讲的是资源管理器,在XA标准中RM都是由数据库来实现的,数…

数据挖掘目标(Kaggle Titanic 生存测试)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns1.数据导入 In [2]: train_data pd.read_csv(r../老师文件/train.csv) test_data pd.read_csv(r../老师文件/test.csv) labels pd.read_csv(r../老师文件/label.csv)[Su…

oracle详细安装教程(附带百度网盘资源)

一,下载安装包途径 1.官网 Unauthorized Request 2.百度网盘分析 https://pan.baidu.com/s/1n221gdTK0Fcho839oRab9g 提取码1q2w 二,安装教程 1.下载完安装包后点击 setup.exe 如果出现一下的问题,使用windows10等系统安装oracle 11g等版本的数据库…

二叉树的最大深度

问题描述: 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入&#xff1…

ue4 解决角度万向锁的问题 蓝图节点

问题:当角度值从359-1变化的时候,数值会经历358、357… 解决方法:勾上Shortest Path,角度值的会从359-1

Ajax原理以及优缺点

Ajax原理 1.Ajax的原理简单来说是在用户和服务器之间加了—个中间层(AJAX引擎),通过XmlHttpRequest对象来向服务器发异步请求, 2.从服务器获得数据,然后用javascript来操作DOM而更新页面。使用户操作与服务器响应异步化。 3.这其中最关键的一…

「Verilog学习笔记」简易秒表

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 timescale 1ns/1nsmodule count_module(input clk,input rst_n,output reg [5:0]second,output reg [5:0]minute);always (posedge clk or negedge rst_n) begin if (~rst…

Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)

本作品是一套 Axure8 高保真移动端电商APP产品原型模板,包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…

各地加速“双碳”落地,数字能源供应商怎么选?

作者 | 曾响铃 文 | 响铃说 随着我国力争2030年前实现“碳达峰”、2060年前实现“碳中和”的“双碳”目标提出,为各地区、各行业的低碳转型和绿色可持续发展制定“倒计时”时间表,一场围绕“数字能源”、“智慧能源”、“新能源”等关键词的创新探索进…

二百一十六、Flume——Flume拓扑结构之负载均衡和故障转移的开发案例(亲测,附截图)

一、目的 对于Flume的负载均衡和故障转移拓扑结构,进行一个开发测试 二、负载均衡和故障转移 (一)结构含义 Flume支持使用将多个sink逻辑上分到一个sink组 (二)结构特征 sink组配合不同的SinkProcessor可以实现负…

《地理信息系统原理》笔记/期末复习资料(10. 空间数据挖掘与空间决策支持系统)

目录 10. 空间数据挖掘与空间决策支持系统 10.1. 空间数据挖掘 10.1.1. 空间数据挖掘的概念 10.1.2. 空间数据挖掘的方法与过程 10.1.3. 空间数据挖掘的应用 10.2. 空间决策支持系统 10.2.1. 空间决策支持系统的概念 10.2.2. 空间决策支持系统的结构 10.2.3. 空间决策…

Onlyoffice本地部署超详细教程(附协作空间2.0新资讯)

陈老老老板🤴 🧙‍♂️本文专栏:生活(主要讲一下自己生活相关的内容)生活就像海洋,只有意志坚强的人,才能到达彼岸。 🧙‍♂️本文简述:ONLYOFFICE相信大家已经有所了解,本篇讲一下o…

mjpg-streamer配置其它端口访问视频

环境 树莓派4B ubuntu 20.04 U口摄像头 确认摄像头可访问 lsusb查看 在dev下可查看到video* sudo mplayer tv://可打开摄像头并访问到视频 下载mjpg-streamer并编译安装 在github下载zip包,下载的源码,需要编译安装 unzip解压 cd mjpg-streamer/mjp…

聚观早报 |一加12首销;华为智能手表释放科技温暖

【聚观365】12月12日消息 一加12首销 华为智能手表释放科技温暖 卡尔动力获地平线战略投资 英伟达希望在越南建立基地 努比亚Z60 Ultra影像规格揭晓 一加12首销 现在有最新消息,近日一加12该机已于昨日开售,售价4299元起。 外观方面,全…

【Axure高保真原型】个性化自定义图片显示列表

今天和大家分享个性化自定义图片显示列表的原型模板,鼠标点击多选按钮,可以切换按钮选中或者取消选中,按钮选中时,对应图片会在列表中显示,按钮取消后,对应图片会自动隐藏。那这个模板是用中继器制作的&…

[C++] 模板进阶(非类型模板参数,特化,分离编译)

文章目录 1、非类型模板参数2、模板的特化2.1 什么是模板特化2.2 函数模板特化2.3 类模板的实例化2.3.1 全特化2.3.2 偏特化 3、模板分离编译3.1 什么是分离编译3.2 模板的分离编译3.3 解决方法 4、模板总结 1、非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即…