论文笔记:A review on multi-label learning

一、介绍

传统的监督学习是单标签学习,但是现实中一个实例可能对应多个标签。这篇文章介绍了多标签分类的定义和评价指标、多标签学习的算法还有其他相关的任务。

二、问题相关定义

2.1 多标签学习任务

假设 X = R d X = R^d X=Rd,表示d维的输入空间, Y = ( y 1 , y 2 , y 3 . , . . . , y q Y = (y_1, y_2, y_3., ..., y_q Y=(y1,y2,y3.,...,yq表示输出的可能q个类别。多标签任务是学习一个方程,在训练集合 D = { ( x i , Y i ) ∣ 1 ≤ i ≤ m } D = \{(x_i, Y_i)|1 \leq i \leq m\} D={(xi,Yi)∣1im}学习一个X到Y的函数。对于每个多标签实例, x i ∈ X x_i \in X xiX是d维特征空间 ( x i 1 , x i 2 , . . . , x i d ) T (x_{i1}, x_{i2}, ..., x_{id})^T (xi1,xi2,...,xid)T Y i ⊆ Y Y_i \subseteq Y YiY是对应于 x x x的标签几何。多标签学习任务就是学习一个多标签分类器 h ( . ) h(.) h(.),对于没有见到过的实例 x ∈ X x \in X xX,可以预测他的标签 h ( x ) ⊆ Y h(x) \subseteq Y h(x)Y

2.2 多标签学习的特点
2.2.1. 不同数据集多标签的程度可能不同

有几个有用的多标签指示符可以用于描述多标签数据集的特性。

  • 最自然的方法就是衡量多标签程度的是label cardinality(标签基数):
    L C a r d ( D ) = 1 m ∑ i = 1 m ∣ Y i ∣ LCard(D) = \frac{1}{m}\sum_{i=1}^m|Y_i| LCard(D)=m1i=1mYi
    表示每个样本的平均标签数目。
  • “标签密度”(label density)按标签空间中可能的标签数规范化标签基数:
    L D e n ( D ) = 1 y ⋅ L C a r d ( D ) LDen(D) = \frac{1}{y} \cdot LCard(D) LDen(D)=y1LCard(D)
  • 标签多样性:Label diversity
    L D i v ( D ) = ∣ Y ∣ e x i s t s x : ( x , Y ) ∈ D ∣ LDiv(D) = |{Y|exists x:(x,Y)\in D}| LDiv(D)=Yexistsx:(x,Y)D
    数据集中出现的不同标签集的数目
  • 标签多样性可以通过数据集的数量来标准化,以表示不同标签集的比例
    P L D i v ( D ) = 1 D ⋅ L D i v ( D ) PLDiv(D)=\frac{1}{D}\cdot LDiv(D) PLDiv(D)=D1LDiv(D)
    多标签学习就是学习x和y的相关性,希望 f ( x , y ′ ) ≥ f ( x , y ′ ′ ) f(x, y^{'}) \ge f(x, y^{''}) f(x,y)f(x,y′′),其中 y ′ ∈ Y y' \in Y yY, y ′ ′ ∉ Y y^{''}\notin Y y′′/Y。所以多标签分类器可以通过函数f(.,.)得到: h ( x ) = { y ∣ f ( x , y ) ≥ t ( x ) , y ∈ Y } h(x) = \{y | f(x,y) \ge t(x), y\in Y\} h(x)={yf(x,y)t(x),yY},其中 t ( x ) t(x) t(x),扮演阈值函数的角色,把标签空间对分成相关的标签集和不相关的标签集。阈值函数可以由训练集产生,可以设为常数。
2.2.2. 标签具有相互关系

学习策略
多标签学习的主要难点在于输出空间的爆炸增长,有效的挖掘标签之间的相关性,是多标签学习成功的关键。根据对相关性挖掘的强弱,可以把多标签算法分为三类。

  1. 一阶学习策略:忽略和其它标签的相关性,比如把多标签分解成多个独立的二分类问题(简单高效)。
  2. 二阶学习策略:考虑标签之间的成对关联,比如为相关标签和不相关标签排序。
  3. 高阶学习策略:考虑多个标签之间的关联,比如对每个标签考虑所有其它标签的影响(效果最优)。
2.2.3 数据不平衡

一. 某个类别对应样例可能远多于另一个类别,类别之间不平衡
二. 某个类别对应的正样本可能远多于负样本(类别之内不平衡)

2.3 阈值校准

多标签学习中的一种常见做法是返回一些实值函数 f ( ⋅ , ⋅ ) f(·,·) f作为学习模型。为了决定最后的输出结果,每个标签上的实值输出应根据阈值函数输出 t ( x ) t(x) t(x)进行校准。
通常有两种方法设置 t ( ∗ ) t(*) t(),设置 t ( ∗ ) t(*) t()为常量或者从训练数据中预测。对于前者, f f f是一个实值函数,所以t可设置为0。当 f f f的输出为概率时, t t t设置为0.5。或者当测试集可见时,阈值可以设置为训练集合测试集的多标签程度指标区别最小的数。
对于后一个策略,可以用stacking-style的步骤来决定阈值函数。假设 t t t是一个线性模型,即 t ( x ) = < w , f ( x ) > + b t(x) = <w, f(x)> + b t(x)=<w,f(x)>+b,这里 f ( x ) = ( f ( x , y 1 ) , . . . , f ( x , y q ) ) T ∈ R q f(x) = (f(x, y1),...,f(x,y_q))^T \in R^q f(x)=(f(x,y1),...,f(x,yq))TRq是一个 q q q维stacking向量。为了学习 w ∗ w^* w b ∗ b^* b,需要求解线性最小二乘。
m i n w ∗ , b ∗ ∑ i − 1 m ( < w ∗ , f ∗ ( x i ) > + b ∗ − s ( x i ) ) 2 min_{w^*,b^*}\sum_{i-1}^m(<w^*,f^*(x_i)> + b^* - s(x_i))^2 minw,bi1m(<w,f(xi)>+bs(xi))2
s ( x i ) = a r g m i n a ∈ R ( ∣ { y j ∣ y j ∈ Y i , f ( x i , y j ) ≤ a } ∣ + ∣ { y k ∣ y k ∈ Y ^ i , f ( x i , y k ) ≥ a } ∣ ) s(x_i)=argmin_{a\in R}(|\{y_j | y_j \in Y_i, f(x_i, y_j) \leq a\}|+|\{y_k|y_k \in \hat Y_i, f(x_i, y_k) \geq a\}|) s(xi)=argminaR({yjyjYi,f(xi,yj)a}+{ykykY^i,f(xi,yk)a})表示模型的输出目标,对每个样本,它以最小误差将 Y Y Y划分为相关和不相关。

2.4 评价指标

2.4.1 分类评价指标
  1. Examples-based metrics 基于样本评价指标
    通过分别评估学习系统在每个测试示例上的性能,然后返回整个测试集的平均值
  2. Label-based metrics 基于标签评价指标
    通过分别评估每个类标签上的学习系统性能,然后返回所有类标签上的宏/微观平均值
2.4.2 排序评价指标

在这里插入图片描述
下面对每个指标进行介绍
基于样本的评价指标

  1. Subset Accuracy(衡量正确率,预测的样本集和真实的样本集完全一样就是正确)
    s u b s e t a c c ( h ) = 1 p ∑ i = 1 p [ h ( x i ) = Y i ] subsetacc(h) = \frac{1}{p} \sum_{i=1}^p[h(x_i) = Y_i] subsetacc(h)=p1i=1p[h(xi)=Yi]
  2. Hamming Loss(衡量的是错分的标签比例,正确标签没有被预测以及错误标签被预测的标签占比)
    h l o s s ( h ) = 1 p ∑ i = 1 p ∣ h ( x i ) Δ Y i ∣ hloss(h) = \frac{1}{p}\sum_{i=1}^p|h(x_i)\Delta Y_i| hloss(h)=p1i=1ph(xi)ΔYi
    Δ \Delta Δ表示两个集合的对称差,返回只在其中一个集合出现的那些值。
  3. Accuracy, Precision, Recall, F值(单标签学习中准确率,精准率,召回率,F值)
    A c c u r a c y ( h ) = 1 p ∑ i = 1 p ∣ h ( x i ) ∩ y i ∣ ∣ h ( x i ) ∪ y i ∣ Accuracy(h)=\frac{1}{p}∑_{i=1}^p\frac{∣h(x_i)∩y_i∣}{|h(x_i)∪y_i|} Accuracy(h)=p1i=1ph(xi)yih(xi)yi
    P r e c i s i o n ( h ) = 1 p ∑ i = 1 p Y i ∩ h ( x i ) h ( x i ) Precision(h) = \frac{1}{p}\sum_{i=1}^p\frac{Y_i \cap h(x_i)}{h(x_i)} Precision(h)=p1i=1ph(xi)Yih(xi)
    R e c a l l = 1 p ∑ i = 1 p Y i ∩ h ( x i ) Y i Recall = \frac{1}{p}\sum_{i=1}^p\frac{Y_i \cap h(x_i)}{Y_i} Recall=p1i=1pYiYih(xi)
    F = 1 + β 2 ⋅ P r e c i s i o n ( h ) ⋅ R e c a l l ( h ) β 2 ⋅ ( P r e c i s i o n ( h ) + R e c a l l ( h ) ) F = \frac{1 + \beta^2 \cdot Precision(h) \cdot Recall(h)}{\beta^2 \cdot (Precision(h) + Recall(h))} F=β2(Precision(h)+Recall(h))1+β2Precision(h)Recall(h)
  4. one-error(“预测到的最相关的标签” 不在 “真实标签”中的样本占比。值越小,表现越好)
    o n e − e r r o r ( f ) = 1 p ∑ i = 1 p [ a r g m a x y ∈ Y f ( x i , y ) ∉ Y i ] one-error(f) = \frac{1}{p}\sum_{i=1}^p[argmax_{y \in Y}f(x_i, y)\notin Y_i] oneerror(f)=p1i=1p[argmaxyYf(xi,y)/Yi]
  5. Coverage(值越小,表现越好)
    c o v e r a g e ( f ) = 1 p ∑ i p m a x y ∈ Y i r a n k f ( x i , y ) − 1 coverage(f) = \frac{1}{p}\sum_{i}^p max_{y \in Y_i } rank_{f_(x_i,y)}-1 coverage(f)=p1ipmaxyYirankf(xi,y)1
  6. Ranking loss(值越小,表现越好)
    r l o s s ( f ) = 1 p ∑ i = 1 p 1 ∣ Y i ∣ ∣ Y ^ i ∣ ∣ { ( y ′ , y ′ ′ ) ∣ f ( x i , y ′ ) ≤ f ( x i , y ′ ′ ) , ( y ′ , y ′ ′ ) ∈ Y i × Y ^ i } ∣ rloss(f) = \frac{1}{p}\sum_{i=1}^p \frac{1}{|Y_i| |\hat Y_i|} |\{(y',y^{''})|f(x_i, y') \leq f(x_i, y^{''}),(y', y^{''}) \in Y_i \times \hat Y_i \}| rloss(f)=p1i=1pYi∣∣Y^i1{(y,y′′)f(xi,y)f(xi,y′′),(y,y′′)Yi×Y^i}
  7. Average Precision(度量比特定标签更相关的那些标签的排名的占比,越大越好)
    a v g p r e c ( f ) = 1 p ∑ i = 1 p 1 ∣ Y i ∣ ∑ y ∈ Y i ∣ y ′ ∣ r a n k f ( x , y ′ ) ≤ r a n k f ( x i , y ) , y ′ ∈ Y i ∣ r a n k f ( x i , y ) avgprec(f)=\frac{1}{p}\sum_{i=1}^p\frac{1}{|Y_i|}\sum_{y \in Y_i}\frac{|{y'|rank_f(x,y') \leq rank_f(x_i,y),y'\in Y_i }|}{rank_{f(x_i,y)}} avgprec(f)=p1i=1pYi1yYirankf(xi,y)yrankf(x,y)rankf(xi,y),yYi
    基于标签的评价指标
  8. 分类评价指标
    对于每个标签,都可以得到 T P , F P , T N , F N TP, FP, TN, FN TP,FP,TN,FN
    在这里插入图片描述
    B ( T P j , F P j , T N j , F N j ) B(TP_j, FP_j, TN_j, FN_j) B(TPj,FPj,TNj,FNj)表示特定的二元分类度量 B ∈ { A c c u r a c y , P r e c i s i o n , R e c a l l , F β } B \in \{Accuracy, Precision, Recall, F^{\beta}\} B{Accuracy,Precision,Recall,Fβ},label-based的分类可以通过两种方式得到
  • Macro-averaging(宏平均,先对单个标签下的数量特征计算得到常规指标,再对多个标签取平均)
    B m a c r o ( h ) = 1 q ∑ j = 1 q B ( T P j , F P j , T N j , F N j ) B_{macro(h)} = \frac{1}{q}\sum_{j=1}^qB(TP_j,FP_j,TN_j,FN_j) Bmacro(h)=q1j=1qB(TPj,FPj,TNj,FNj)
  • Micro-averaging(微平均,对数据集中的每一个实例不分类别进行统计建立全局混淆矩阵,然后计算相应指标)
    B m i c r o ( h ) = B ( ∑ j = 1 q T P j , ∑ j = 1 q F P j , ∑ j = 1 q T N j , ∑ j = 1 q F N j ) B_{micro(h)} = B(\sum_{j=1}^q TP_j, \sum_{j=1}^q FP_j, \sum_{j=1}^q TN_j, \sum_{j=1}^q FN_j) Bmicro(h)=B(j=1qTPj,j=1qFPj,j=1qTNj,j=1qFNj)
  1. 排序评价指标 rank metric
  • AUC-macro(“排序正确”的数据对的占比,先对单个标签计算,再平均)
    A U C m a c r o = 1 q ∑ j = 1 q A U C j = 1 q ∑ i = 1 q ∣ { ( x ′ , x ′ ′ ) ∣ f ( x ′ , y j ) ≥ f ( x ′ , y j ) , ( x ′ , x ′ ′ ) ∈ Z j × Z ^ j } ∣ ∣ Z j ∣ ∣ Z ^ j ∣ AUC_{macro} = \frac{1}{q}\sum_{j=1}^q AUC_j = \frac{1}{q}\sum_{i=1}^q\frac{|\{(x', x'')|f(x',y_j) \geq f(x',y_j), (x', x'') \in Z_j \times \hat Z_j\}|}{|Z_j||\hat Z_j|} AUCmacro=q1j=1qAUCj=q1i=1qZj∣∣Z^j{(x,x′′)f(x,yj)f(x,yj),(x,x′′)Zj×Z^j}
    Z j = { x i ∣ y j ∈ Y i , 1 ≤ i ≤ p } Z_j = \{x_i|y_j \in Y_i, 1\leq i \leq p\} Zj={xiyjYi,1ip}表示的是含有 y j y_j yj标签的样本数量,
    Z ^ j = { x i ∣ y j ∉ Y i , 1 ≤ i ≤ p } \hat Z_j = \{x_i|y_j \notin Y_i, 1\leq i \leq p\} Z^j={xiyj/Yi,1ip}表示的是不含有 y j y_j yj标签的样本数量

  • AUC-micro(“排序正确”的数据对的占比,把多个标签考虑在内来计算占比)
    A U C m i c r o = 1 q ∑ j = 1 q A U C j = 1 q ∑ i = 1 q ∣ { ( x ′ , x ′ ′ , y ′ , y ′ ′ ) ∣ f ( x ′ , y ′ ) ≥ f ( x ′ ′ , y ′ ′ ) , ( x ′ , y ′ ) ∈ S + , ( x ′ ′ , y ′ ′ ) ∈ S − } ∣ ∣ S + ∣ ∣ S − ∣ AUC_{micro} = \frac{1}{q}\sum_{j=1}^q AUC_j = \frac{1}{q}\sum_{i=1}^q\frac{|\{(x', x'', y', y'')|f(x',y') \geq f(x'',y''),(x',y')\in S^+,(x'', y'') \in S^-\}|}{|S^+||S^-|} AUCmicro=q1j=1qAUCj=q1i=1qS+∣∣S{(x,x′′,y,y′′)f(x,y)f(x′′,y′′),(x,y)S+,(x′′,y′′)S}
    S + = ( x i , y ) ∣ y ∈ Y i , 1 ≤ i ≤ p S^+ = {(x_i, y)|y\in Y_i, 1 \leq i \leq p} S+=(xi,y)yYi,1ip表示的是相关的样本标签对,
    S − = ( x i , y ) ∣ y ∉ Y i , 1 ≤ i ≤ p S^- = {(x_i, y)|y\notin Y_i, 1 \leq i \leq p} S=(xi,y)y/Yi,1ip表示的是不相关的样本标签对

三、多分类学习算法

两种学习方法:

  1. 问题转换法(让数据适应算法)
    把多标签分类转为其他成熟的场景。代表算法有一阶binary revevance和高阶方法classifier chains。他们将多标签问题转为二分类。二阶方法有calibrated label ranking。将多标签分类转为标签排序,高阶方法radom k-labelset将多标签学习转为多分类问题。
  2. 算法改编方法(让算法适应数据)
    更改学习技术来应对多标签数据。代表算法包括一阶方法ML-knn改编k近邻,一阶方法ML-DT改编决策树,二阶方法Rank-SVM改编核技巧,二阶方法CML改编information-theretic techniques。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/239185.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云cdn设置相同的域名路径访问不同的oss目录

1.设置回源配置&#xff0c;添加回源URL改写 2.设置跨域&#xff0c;cdn的跨域优先oss 3.回源设置

【智能家居】九、停车场车牌识别功能点(回调、解耦)

一、翔云 人工智能开放平台&#xff08;车牌识别&#xff09; 二、cJSON 库 三、实现代码 四、回调函数 五、人脸识别和车牌识别获取数据的区别 六、异步网络请求和同步网络请求的区别 七、解耦 一、翔云 人工智能开放平台&#xff08;车牌识别&#xff09; 翔云 人工智能开放…

写 SVG 动画必看!SVG系列文章4-微信公众号编写

1、基础设置 1.1 上传背景图素材 使用到的图片需要上传至微信后台&#xff0c;获取线上地址&#xff1a; 1.2 导入微信文章正文 新建图文消息&#xff0c;先输入好标题、作者&#xff0c;上传好封面图。然后在正文区域输入点文字&#xff0c;打开 chrome 调试工具&#xff0…

CorelDRAW软件2024版本好用吗?有哪些功能优势

CorelDRAW是一款综合性强大的专业平面设计软件&#xff0c;其功能覆盖了矢量图形设计、高级文字编辑、精细绘图以及多页文档和页面设计。该软件不仅适用于广告设计、包装设计&#xff0c;还广泛应用于出版、网页设计和多媒体制作等多个领域。下面就给大家介绍一下CorelDRAW这款…

台式扫描电镜中的扫描速度和扫描模式如何选择?

台式扫描电镜&#xff08;SEM&#xff09;是一种利用电子束扫描样品表面&#xff0c;通过检测样品反射或发射的次级电子、背散射电子、X 射线等信号&#xff0c;来获取样品的形貌、结构、组成和分布等信息的仪器。台式扫描电镜具有体积小、操作简单、样品制备方便、分辨率高、成…

论文怎么改才能降低重复率

一、引言&#xff1a;智能工具助力&#xff0c;轻松降低论文重复率 论文的重复率是学术写作中的重要问题&#xff0c;如何有效降低重复率成为了许多研究者的关注焦点。如今&#xff0c;智能工具的发展为我们提供了更多选择。本文将介绍几种实用的智能工具&#xff0c;包括快码…

PyInstaller 打包 Python 脚本为 .exe 可执行文件闪退、No Model named XXX问题

文章目录 前言.exe 可执行文件闪退No Model named XXXPython 环境问题查看当前python路径查看当前python环境使用的site-package路径 个人简介 前言 在上一篇文章中&#xff0c;我们介绍了如何将 Python 脚本打包为 .exe 可执行文件&#xff0c;但有时候打包生成的 .exe 文件会…

EasyV易知微数字孪生助力解决实际行业问题与痛点

数字孪生技术在当前多个领域得到了广泛的应用&#xff0c;特别是在航空航天、工业、城市和医学等领域&#xff0c;它被视为许多科技企业所关注的焦点。这种技术已经成为实现智能化的重要手段&#xff0c;它可以应用于项目设计、建造和运营等各个阶段&#xff0c;能够解决实际问…

总线一:I2C简介(介绍看这一篇就够啦)

本节主要介绍以下内容&#xff1a; I2C协议简介 STM32的I2C特性及架构 I2C初始化结构体详解 一、I2C协议简介 I2C 通讯协议(Inter&#xff0d;Integrated Circuit)是由Phiilps公司开发的&#xff0c;由于它引脚少&#xff0c;硬件实现简单&#xff0c;可扩展性强&#xff…

C/C++,动态 DP 问题的计算方法与源程序

1 文本格式 #include <bits/stdc.h> using namespace std; typedef long long LL; const int maxn 500010; const int INF 0x3f3f3f3f; int Begin[maxn], Next[maxn], To[maxn], e, n, m; int size[maxn], son[maxn], top[maxn], fa[maxn], dis[maxn], p[maxn], i…

HelpLook VS Confluence:知识管理方面谁更有优势?

多年来&#xff0c;在线协作和文档工具市场一直被Confluence所主导。Confluence由Atlassian于2004年创立&#xff0c;很迅速地成为企业寻求强大而全面的协作解决方案和知识管理的热门选择。然而&#xff0c;随着新工具如Notion和HelpLook的出现&#xff0c;市场格局发生了变化&…

OpenVINS学习3——初始化原理学习

一、OpenVINS初始化概述 VIO初始化的主要意义有&#xff1a; &#xff08;1&#xff09;对齐相机的世界坐标系和惯性系&#xff0c;因此需要估计重力方向。 &#xff08;2&#xff09;为后续的VIO算法提供较为准确的初始参数和状态&#xff08;尺度、IMU bias、初始速度&…

记录hive/spark取最新且不为null的方法

听标题可能听不懂我想表达的意思&#xff0c;我来描述一下我要做的事&#xff1a; 比如采集同学对某一网站进行数据采集&#xff0c;同一个用户每天会有很多条记录&#xff0c;所以我们要取一条这个用户最新的状态&#xff0c;比如用户改了N次昵称&#xff0c;我们只想得到最后…

C++STL之List的实现

首先我们要实现List的STL,我们首先要学会双向带头链表的数据结构。那么第一步肯定是要构建我们的节点的数据结构。 首先要有数据域&#xff0c;前后指针域即可。 再通过模板类进行模板化。 然后再写List的构造函数&#xff0c;这个地方用T&,通过引用就可以减少一次形参拷…

坑爹的奥数(枚举法)

枚举法是一种解决问题的基本方法&#xff0c;它通过列举问题的所有可能情况来找到问题的解。这种方法适用于问题的解空间相对较小&#xff0c;可以通过穷举所有可能的解来找到最优解或满足特定条件的解。 以下是枚举法的一般步骤&#xff1a; 定义问题&#xff1a; 确定问题的…

学习-面试java基础-(集合)

String 为什么不可变&#xff1f; 1线程安全 2支持hash映射和缓存。因为String的hash值经常会使用到&#xff0c;比如作为 Map 的键&#xff0c;不可变的特性使得 hash 值也不会变&#xff0c;不需要重新计算。 3出于安全考虑。网络地址URL、文件路径path、密码通常情况下都是以…

易点易动设备管理系统:助力企业高效巡检的智能选择

在现代企业管理中&#xff0c;设备巡检是确保设备正常运行和生产高效的重要环节。然而&#xff0c;传统的巡检方式常常面临着效率低下、信息不准确等问题。为了解决这些挑战&#xff0c;易点易动设备管理系统应运而生。本文将详细介绍易点易动设备管理系统如何助力企业实现高效…

红队攻防实战之DEATHNOTE

难道向上攀爬的那条路&#xff0c;不是比站在顶峰更让人热血澎湃吗 渗透过程 获取ip 使用Kali中的arp-scan工具扫描探测 端口扫描 可以看到开放了22和80端口。 访问80端口&#xff0c;重定向到 修改hosts文件&#xff0c;将该域名解析到ip 如图 修改完再次访问&#xff0…

Python 递归、闭包与装饰器的编程魔法

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com 在Python编程中&#xff0c;递归、闭包和装饰器是一些强大的工具&#xff0c;它们能够为代码增色不少&#xff0c;提高代码的可读性和灵活性。本文将深入探讨这三种编程魔法的原理和应用&#xff0c;通过丰富的示…

040.Python面向对象_设计原则

我 的 个 人 主 页&#xff1a;&#x1f449;&#x1f449; 失心疯的个人主页 &#x1f448;&#x1f448; 入 门 教 程 推 荐 &#xff1a;&#x1f449;&#x1f449; Python零基础入门教程合集 &#x1f448;&#x1f448; 虚 拟 环 境 搭 建 &#xff1a;&#x1f449;&…