【算法优选】 动态规划之路径问题——贰

文章目录

  • 🎋前言
  • 🌲[下降最小路径和](https://leetcode.cn/problems/minimum-path-sum/)
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • 🎍[最小路径和](https://leetcode.cn/problems/minimum-path-sum/)
    • 🚩算法思路
    • 🚩代码实现
  • 🌴[地下城游戏](https://leetcode.cn/problems/dungeon-game/)
    • 🚩题目描述
    • 🚩算法思路
    • 🚩代码实现
  • ⭕总结

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表⽰

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🌲下降最小路径和

🚩题目描述

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

  • 示例 1:

在这里插入图片描述
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

  • 示例 2:

在这里插入图片描述
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

class Solution {
    public int minFallingPathSum(int[][] matrix) {

    }
}

🚩算法思路:

关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。
⽐较难的地⽅可能就是对于「边界条件」的处理。

  1. 状态表⽰:
    对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
    • 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式

这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。

  1. 状态转移⽅程:
    对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
    • 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
    • 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
    • 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;

我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +1])) + matrix[i][j] 。

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为0 即可。

  1. 填表顺序:
    根据「状态表⽰」,填表的顺序是「从上往下」。

  2. 返回值:
    注意这⾥不是返回 dp[m][n] 的值!

题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「dp表中最后⼀⾏的最⼩值」。

🚩代码实现

class Solution {
    public int minFallingPathSum(int[][] matrix) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回结果
        int n = matrix.length;
        int[][] dp = new int[n + 1][n + 2];
        for(int i = 1; i <= n; i++) {
            dp[i][0] = dp[i][n + 1] = Integer.MAX_VALUE;
        }
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i - 1][j - 1],dp[i - 1][j + 1])) + matrix[i - 1][j - 1];
            }
        }
    
        int ret = Integer.MAX_VALUE;
        for(int j = 1; j <= n; j++) {
            ret = Math.min(ret, dp[n][j]);
        }
        return ret;
    }
}

🎍最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

  • 示例 1:
    在这里插入图片描述
    输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
    输出:7
    解释:因为路径 1→3→1→1→1 的总和最小。

  • 示例 2:
    输入:grid = [[1,2,3],[4,5,6]]
    输出:12

class Solution {
    public int minPathSum(int[][] grid) {

    }
}

🚩算法思路

像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到「不同路径」⼀类的题⾥⾯。

  1. 状态表⽰:
    对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
    • 从 [i, j] 位置出发,一系列操作;
    • 从起始位置出发,到达 [i, j] 位置,一系列操作。

这⾥选择第⼆种定义状态表⽰的⽅式:dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。

  1. 状态转移:
    简单分析⼀下。如果 dp[i][j] 表⽰到达到达 [i, j] 位置处的最⼩路径和,那么到达[i, j] 位置之前的⼀⼩步,有两种情况:
    • 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
    • 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。

由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。

  2. 返回值:
    根据「状态表⽰」,我们要返回的结果是 dp[m][n]

🚩代码实现

class Solution {
    public int minPathSum(int[][] grid) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for(int j = 0; j <= n; j++)  {
            dp[0][j] = Integer.MAX_VALUE;
        }
        for(int i = 0; i <= m; i++) {
            dp[i][0] = Integer.MAX_VALUE;
        }
        dp[0][1] = dp[1][0] = 0;
        for(int i = 1; i <= m; i++){
            for(int j = 1; j <= n; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j-1];
            }
        }
        return dp[m][n];
    }
}

🌴地下城游戏

🚩题目描述

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

  • 示例 1:
    在这里插入图片描述
    输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
    输出:7
    解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

  • 示例 2:
    输入:dungeon = [[0]]
    输出:1

class Solution {
    public int calculateMinimumHP(int[][] dungeon) {

    }
}

🚩算法思路

  1. 状态表⽰:

这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。

这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。

综上所述,定义状态表⽰为:
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

  1. 状态转移⽅程:
    对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[i] [j] 的最终答案是 x ):
    • ⾛到右边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
    • ⾛到下边,然后⾛向终点
      那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;

综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:dp[i][j] = max(1, dp[i][j])

  1. 初始化:
    可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
    • 辅助结点⾥⾯的值要「保证后续填表是正确的」;
    • 「下标的映射关系」。

在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。

  1. 填表顺序:
    根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。

  2. 返回值:
    根据「状态表⽰」,我们需要返回 dp[0][0] 的值

🚩代码实现

class Solution {
    public int calculateMinimumHP(int[][] d) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int m = d.length;
        int n = d[0].length;
        int[][] dp = new int[m + 1][n + 1];
        for(int j = 0; j <= n; j++) {
            dp[m][j] = Integer.MAX_VALUE;
        }
        for(int i = 0; i <= m; i++) {
            dp[i][n] = Integer.MAX_VALUE;
        }
        dp[m][n - 1] = dp[m - 1][n] = 1;
        for(int i = m - 1; i >= 0; i--) {
            for(int j = n - 1; j >= 0; j--) {
                dp[i][j] = Math.min(dp[i][j + 1], dp[i + 1][j]) - d[i][j];
                dp[i][j] = Math.max(dp[i][j], 1);
            }
        }
        return dp[0][0];
    }
}

⭕总结

关于《【算法优选】 动态规划之路径问题——贰》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/236714.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初识RabbitMQ

一、消息队列 1、消息队列的介绍 在介绍RabbitMQ之前&#xff0c;首先来介绍下消息队列。消息队列是生产者-消费者模型的一个典型的代表&#xff0c;由一端往消息队列中不断的写入消息&#xff0c;而另一端则可以读取或者订阅队列中的消息。当新的消息入队时&#xff0c;就会通…

12.11

1.q&#xff0c;w&#xff0c;e亮led1&#xff0c;2&#xff0c;3&#xff1b; a&#xff0c;s&#xff0c;d灭led1&#xff0c;2&#xff0c;3&#xff1b; main.c #include "uar1.h"#include "led.h"void delay(int ms){int i,j;for(i0;i<ms;i){for…

红队攻防实战之Redis-RCE集锦

心若有所向往&#xff0c;何惧道阻且长 Redis写入SSH公钥实现RCE 之前进行端口扫描时发现该机器开着6379&#xff0c;尝试Redis弱口令或未授权访问 尝试进行连接Redis&#xff0c;连接成功&#xff0c;存在未授权访问 尝试写入SSH公钥 设置redis的备份路径 设置保存文件名 …

透析跳跃游戏

关卡名 理解与贪心有关的高频问题 我会了✔️ 内容 1.理解跳跃游戏问题如何判断是否能到达终点 ✔️ 2.如果能到终点&#xff0c;如何确定最少跳跃次数 ✔️ 1. 跳跃游戏 leetCode 55 给定一个非负整数数组&#xff0c;你最初位于数组的第一个位置。数组中的每个元素代表…

[MySQL]SQL优化之索引的使用规则

&#x1f308;键盘敲烂&#xff0c;年薪30万&#x1f308; 目录 一、索引失效 &#x1f4d5;最左前缀法则 &#x1f4d5;范围查询> &#x1f4d5;索引列运算&#xff0c;索引失效 &#x1f4d5;前模糊匹配 &#x1f4d5;or连接的条件 &#x1f4d5;字符串类型不加 …

C语言中的一维数组与二维数组

目录 一维数组数组的创建初始化使用在内存中的存储 二维数组创建初始化使用在内存中的存储 数组越界 一维数组 数组的创建 数组是一组相同类型元素的集合。 int arr1[10]; char arr3[10]; float arr4[10]; double arr5[10];下面这个数组能否成功创建&#xff1f; int count…

计算机丢失msvcp140dll怎么恢复?快速解决dll缺失问题

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“msvcp140dll丢失”。msvcp140.dll是一个动态链接库文件&#xff0c;它包含了许多C标准库函数的实现。这些动态链接库文件是程序运行所必需的&#xff0c;它们包含了许多函数和资源&#xf…

spring结合设计模式之策略模式

策略模式基本概念&#xff1a; 一个接口或者抽象类&#xff0c;里面两个方法&#xff08;一个方法匹配类型&#xff0c;一个可替换的逻辑实现方法&#xff09;不同策略的差异化实现(就是说&#xff0c;不同策略的实现类) 使用策略模式替换判断&#xff0c;使代码更加优雅。 …

Guava反射工具详解

第1章&#xff1a;引言 大家好&#xff0c;我是小黑&#xff0c;今天咱们聊聊Java反射&#xff0c;特别是在Guava这个强大的库中&#xff0c;它是怎么让反射变得更简单&#xff0c;更有趣的。咱们都知道&#xff0c;反射在Java中是个相当强大的特性&#xff0c;它允许程序在运…

AcWing 95. 费解的开关(递推)

题目链接 活动 - AcWing 本活动组织刷《算法竞赛进阶指南》&#xff0c;系统学习各种编程算法。主要面向有一定编程基础的同学。https://www.acwing.com/problem/content/97/ 题解 只要第一行开关的状态确定&#xff0c;则所有开关的状态都可以被推出来。第一行开关总共有种操…

从零开始学R语言?这个网站帮你快速入门,成为数据分析高手!

介绍&#xff1a;R语言&#xff0c;全称The R Programming Language&#xff0c;是一种属于GNU系统的自由、免费、源代码开放的软件。它主要被用于统计计算和统计制图&#xff0c;因此&#xff0c;它是统计分析和数据可视化的优秀工具。 R语言的特点丰富多样。首先&#xff0c;…

入职字节外包一个月,我离职了。。。

有一种打工人的羡慕&#xff0c;叫做“大厂”。 真是年少不知大厂香&#xff0c;错把青春插稻秧。 但是&#xff0c;在深圳有一群比大厂员工更庞大的群体&#xff0c;他们顶着大厂的“名”&#xff0c;做着大厂的工作&#xff0c;还可以享受大厂的伙食&#xff0c;却没有大厂…

AWS攻略——使用Public NAT解决私有子网实例访问互联网

文章目录 创建NAT网关编辑Private子网路由测试知识点参考资料 在《AWS攻略——子网》一文中&#xff0c;我们分别创建了一个Public子网和一个Private子网&#xff0c;并让Public子网中的实例可以SSH登录到Private子网的实例中。 现实场景中&#xff0c;我们可能存在如下需求&a…

用微元思想求解三重积分——基于Matlab

仅作自己学习使用 1. 题目 求解下列三重积分&#xff0c;其中A&#xff0c;μ&#xff0c;r都是常数。 求解的准确性可以用下式进行评估&#xff1a; 听过考研数一张宇课程的朋友应该指导&#xff0c;求解三重积分就是就一个面包&#xff0c;我们将面包无限细分为一个小块&a…

Python常见面试知识总结(二):数据结构、类方法及异常处理

【十三】Python中assert的作用&#xff1f; Python中assert&#xff08;断言&#xff09;用于判断一个表达式&#xff0c;在表达式条件为 f a l s e false false的时候触发异常。 断言可以在条件不满足程序运行的情况下直接返回错误&#xff0c;而不必等待程序运行后出现崩溃…

2023最新版JavaSE教程——第10天:多线程

目录 一、相关概念1.1 程序、进程与线程1.2 查看进程和线程1.3 线程调度1.4 多线程程序的优点1.5 补充概念1.5.1 单核CPU和多核CPU1.5.2 并行与并发 二、创建和启动线程2.1 概述2.2 方式1&#xff1a;继承Thread类2.3 方式2&#xff1a;实现Runnable接口2.4 变形写法2.5 对比两…

OpenAI接口调用示例

最近为公司做了一个ChatGPT工具&#xff0c;这里展示一下OpenAI接口的调用 前提条件 访问OpenAI官网&#xff08;国内需要翻墙&#xff09;的账号&#xff0c;需要sk 地址&#xff1a;https://platform.openai.com 依赖 使用开源工具调用OpenAI接口&#xff0c;依赖如下&am…

使用yum/dnf管理软件包

本章主要介绍使用 yum 对软件包进行管理。 yum 的介绍搭建yum源创建私有仓库yum客户端的配置yum的基本使用使用第三方yum源 使用rpm安装包时经常会遇到一个问题就是包依赖&#xff0c;如下所示。 [rootrhel03 ~]# rpm -ivh /mnt/AppStream/Packages/httpd-2.4.37-41.modulee…

mysql原理--B+树索引

1.没有索引的查找 1.1.在一个页中的查找 (1). 以主键为搜索条件 可以在 页目录 中使用二分法快速定位到对应的槽&#xff0c;然后再遍历该槽对应分组中的记录即可快速找到指定的记录。 (2). 以其他列作为搜索条件 这种情况下只能从 最小记录 开始依次遍历单链表中的每条记录&am…