这里写自定义目录标题
- 前言
- KMP 算法基本原理
- 失效函数计算方法
- KMP 算法复杂度分析
- 解答开篇 & 内容小结
前言
本节课程思维导图:
BM 算法,是工程中非常常用的一种高效字符串匹配算法。不过,在所有的字符串匹配算法里,要说最知名的一种的话,那就非 KMP 算法莫属。很多时候,提到字符串匹配,我们首先想到的就是 KMP 算法。
实际上,KMP 算法跟 BM 算法的本质是一样的。上一节,我们讲了好后缀和坏字符规则,今天,我们就看下,如何借助上一节 BM 算法的讲解思路,让你能更好地理解 KMP 算法?
KMP 算法基本原理
KMP 算法是根据三位作者(D.E.Knuth,J.H.Morris 和 V.R.Pratt)的名字来命名的,算法的全称是 Knuth Morris Pratt 算法,简称为 KMP 算法。
KMP 算法的核心思想,跟 BM 算法非常相近。我们假设主串是 a,模式串是 b。在模式串与主串匹配的过程中,当遇到不可匹配的字符的时候,我们希望找到一些规律,可以将模式串往后多滑动几位,跳过那些肯定不会匹配的情况。
KMP 算法中,在模式串和主串匹配的过程中,把不能匹配的那个字符仍然叫作坏字符,把已经匹配的那段字符串叫作好前缀。
当遇到坏字符的时候,我们就要把模式串往后滑动,在滑动的过程中,只要模式串和好前缀有上下重合,前面几个字符的比较,就相当于拿好前缀的后缀子串,跟模式串的前缀子串在比较。
KMP 算法就是在试图寻找一种规律:在模式串和主串匹配的过程中,当遇到坏字符后,对于已经比对过的好前缀,能否找到一种规律,将模式串一次性滑动很多位?
我们只需要拿好前缀本身,在它的后缀子串中,查找最长的那个可以跟好前缀的前缀子串匹配的。假设最长的可匹配的那部分前缀子串是{v},长度是 k。我们把模式串一次性往后滑动 j-k 位,相当于,每次遇到坏字符的时候,我们就把 j 更新为 k,i 不变,然后继续比较。
我把好前缀的所有后缀子串中,最长的可匹配前缀子串的那个后缀子串,叫作最长可匹配后缀子串;对应的前缀子串,叫作最长可匹配前缀子串。
如何来求好前缀的最长可匹配前缀和后缀子串呢?我发现,这个问题其实不涉及主串,只需要通过模式串本身就能求解。所以,我就在想,能不能事先预处理计算好,在模式串和主串匹配的过程中,直接拿过来就用呢?
似 BM 算法中的 bc、suffix、prefix 数组,KMP 算法也可以提前构建一个数组,用来存储模式串中每个前缀(这些前缀都有可能是好前缀)的最长可匹配前缀子串的结尾字符下标。我们把这个数组定义为 next 数组,很多书中还给这个数组起了一个名字,叫失效函数(failure function)。
数组的下标是每个前缀结尾字符下标,数组的值是这个前缀的最长可以匹配前缀子串的结尾字符下标。这句话有点拗口,我举了一个例子,你一看应该就懂了。
有了 next 数组,我们很容易就可以实现 KMP 算法了。我先假设 next 数组已经计算好了,先给出 KMP 算法的框架代码。
// a, b分别是主串和模式串;n, m分别是主串和模式串的长度。
public static int kmp(char[] a, int n, char[] b, int m) {
int[] next = getNexts(b, m);
int j = 0;
for (int i = 0; i < n; ++i) {
while (j > 0 && a[i] != b[j]) { // 一直找到a[i]和b[j]
j = next[j - 1] + 1;
}
if (a[i] == b[j]) {
++j;
}
if (j == m) { // 找到匹配模式串的了
return i - m + 1;
}
}
return -1;
}
失效函数计算方法
KMP 算法的基本原理讲完了,我们现在来看最复杂的部分,也就是 next 数组是如何计算出来的?当然,我们可以用非常笨的方法,比如要计算下面这个模式串 b 的 next[4],我们就把 b[0, 4]的所有后缀子串,从长到短找出来,依次看看,是否能跟模式串的前缀子串匹配。很显然,这个方法也可以计算得到 next 数组,但是效率非常低。有没有更加高效的方法呢?
这里的处理非常有技巧,类似于动态规划。我们按照下标从小到大,依次计算 next 数组的值。当我们要计算 next[i]的时候,前面的 next[0],next[1],……,next[i-1]应该已经计算出来了。利用已经计算出来的 next 值,我们是否可以快速推导出 next[i]的值呢?
如果 next[i-1]=k-1,也就是说,子串 b[0, k-1]是 b[0, i-1]的最长可匹配前缀子串。如果子串 b[0, k-1]的下一个字符 b[k],与 b[0, i-1]的下一个字符 b[i]匹配,那子串 b[0, k]就是 b[0, i]的最长可匹配前缀子串。所以,next[i]等于 k。但是,如果 b[0, k-1]的下一字符 b[k]跟 b[0, i-1]的下一个字符 b[i]不相等呢?这个时候就不能简单地通过 next[i-1]得到 next[i]了。这个时候该怎么办呢?
我们假设 b[0, i]的最长可匹配后缀子串是 b[r, i]。如果我们把最后一个字符去掉,那 b[r, i-1]肯定是 b[0, i-1]的可匹配后缀子串,但不一定是最长可匹配后缀子串。所以,既然 b[0, i-1]最长可匹配后缀子串对应的模式串的前缀子串的下一个字符并不等于 b[i],那么我们就可以考察 b[0, i-1]的次长可匹配后缀子串 b[x, i-1]对应的可匹配前缀子串 b[0, i-1-x]的下一个字符 b[i-x]是否等于 b[i]。如果等于,那 b[x, i]就是 b[0, i]的最长可匹配后缀子串。
可是,如何求得 b[0, i-1]的次长可匹配后缀子串呢?次长可匹配后缀子串肯定被包含在最长可匹配后缀子串中,而最长可匹配后缀子串又对应最长可匹配前缀子串 b[0, y]。于是,查找 b[0, i-1]的次长可匹配后缀子串,这个问题就变成,查找 b[0, y]的最长匹配后缀子串的问题了。
// b表示模式串,m表示模式串的长度
private static int[] getNexts(char[] b, int m) {
int[] next = new int[m];
next[0] = -1;
int k = -1;
for (int i = 1; i < m; ++i) {
while (k != -1 && b[k + 1] != b[i]) {
k = next[k];
}
if (b[k + 1] == b[i]) {
++k;
}
next[i] = k;
}
return next;
}
KMP 算法复杂度分析
我们现在来分析一下 KMP 算法的时间、空间复杂度是多少?
空间复杂度很容易分析,KMP 算法只需要一个额外的 next 数组,数组的大小跟模式串相同。所以空间复杂度是 O(m),m 表示模式串的长度。
KMP 算法包含两部分,第一部分是构建 next 数组,第二部分才是借助 next 数组匹配。所以,关于时间复杂度,我们要分别从这两部分来分析。
我们先来分析第一部分的时间复杂度。
我们可以找一些参照变量,i 和 k。i 从 1 开始一直增加到 m,而 k 并不是每次 for 循环都会增加,所以,k 累积增加的值肯定小于 m。而 while 循环里 k=next[k],实际上是在减小 k 的值,k 累积都没有增加超过 m,所以 while 循环里面 k=next[k]总的执行次数也不可能超过 m。因此,next 数组计算的时间复杂度是 O(m)。
我们再来分析第二部分的时间复杂度。分析的方法是类似的。
i 从 0 循环增长到 n-1,j 的增长量不可能超过 i,所以肯定小于 n。而 while 循环中的那条语句 j=next[j-1]+1,不会让 j 增长的,那有没有可能让 j 不变呢?也没有可能。因为 next[j-1]的值肯定小于 j-1,所以 while 循环中的这条语句实际上也是在让 j 的值减少。而 j 总共增长的量都不会超过 n,那减少的量也不可能超过 n,所以 while 循环中的这条语句总的执行次数也不会超过 n,所以这部分的时间复杂度是 O(n)。
所以,综合两部分的时间复杂度,KMP 算法的时间复杂度就是 O(m+n)。
解答开篇 & 内容小结
KMP 算法和BM 算法的本质非常类似,都是根据规律在遇到坏字符的时候,把模式串往后多滑动几位。
BM 算法有两个规则,坏字符和好后缀。KMP 算法借鉴 BM 算法的思想,可以总结成好前缀规则。这里面最难懂的就是 next 数组的计算。如果用最笨的方法来计算,确实不难,但是效率会比较低。所以,我讲了一种类似动态规划的方法,按照下标 i 从小到大,依次计算 next[i],并且 next[i]的计算通过前面已经计算出来的 next[0],next[1],……,next[i-1]来推导。
KMP 算法的时间复杂度是 O(n+m)。